Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η
Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model...
Gespeichert in:
Veröffentlicht in: | Oxidative medicine and cellular longevity 2018-01, Vol.2018 (2018), p.1-13 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Oxidative medicine and cellular longevity |
container_volume | 2018 |
creator | He, Ming Xu, Ping Wu, Zelong Huang, Jiyi Qiao, Yang He, Huan Zhang, Zeyu Yin, Dong |
description | Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model. Prior to inducing A/R injury, rat cardiomyocyte-derived cell line H9c2 was stimulated with 8 μM of Tanshinone IIA for 48 hours. When compared with the A/R group, the Tanshinone IIA treatment significantly increased cell viability and decreased lactate dehydrogenase activity. Tanshinone IIA upregulated 14-3-3η expression and facilitated Bcl-2 translocation to the mitochondrial outer membrane, which bound with voltage-dependent anion channel 1. In addition, pretreatment with Tanshinone IIA reduced the generation of reactive oxygen species and cytochrome c release, inactivated caspase-3, prevented mitochondrial permeability transition pore opening, and reduced the percentage of apoptotic cells. Moreover, treatment with Tanshinone IIA reduced the level of malondialdehyde, thereby increasing the activity of superoxide dismutase and glutathione peroxidase. Silencing the expression of 14-3-3η by adenovirus blocked the above-mentioned results. These novel findings showed that pretreatment with Tanshinone IIA alleviated H9c2 cell damage against A/R injury and was associated with upregulation of 14-3-3η, thereby facilitating Bcl-2 translocation to the mitochondrial outer membrane and preventing mitochondrial permeability transition pore opening, decreasing cytochrome c release, preventing caspase-3 activation, and restraining apoptosis. |
doi_str_mv | 10.1155/2018/3583921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6046124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078579116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-f12de51d4b8b629ee059e65fcc7e32cfab66c33712ae4d1b7b0ff87978a185fa3</originalsourceid><addsrcrecordid>eNqNkctuEzEUhkcIREthxxpZYoNUhvg2njELpDQCGqkVCIX1yOM5ThxN7NZ2QvM8PARvwTPhkBAuK1bHl0-_z_FXFE8JfkVIVY0oJs2IVQ2TlNwrTonktMRS8vvHNcYnxaMYlxgLRjl5WJwwjCssKn5afJ0pFxfWeQdoOh2jjwFSAJVW4FLe-AQ6RXQpNUUTGIaI1FxZFxMaO39n1egT-LvtHJxK1js0dct12L7OdeOHDfwM8QalBaBZyA8NXu_BfHihh5Ki5NG1TV4vvOuDVegaeqsS9KjbIsJLVrLv3x4XD4waIjw51LPi87u3s8llefXh_XQyvio1r0kqDaE9VKTnXdMJKgFwJUFURusaGNVGdUJoxmpCFfCedHWHjWlqWTeKNJVR7Kx4s8-9WXcr6HXuPqihvQl2pcK29cq2f984u2jnftMKzAWhPAe8OAQEf7uGmNqVjTp_m3Lg17GluG6qWhIiMvr8H3Tp18Hl8TIlBMNCsh31ck_p4GMMYI7NENzu7Lc7--3Bfsaf_TnAEf6lOwPneyAb79UX-59xkBkw6jdNCaE1Yz8ArOPDgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066306936</pqid></control><display><type>article</type><title>Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>He, Ming ; Xu, Ping ; Wu, Zelong ; Huang, Jiyi ; Qiao, Yang ; He, Huan ; Zhang, Zeyu ; Yin, Dong</creator><contributor>Crabtree, Mark</contributor><creatorcontrib>He, Ming ; Xu, Ping ; Wu, Zelong ; Huang, Jiyi ; Qiao, Yang ; He, Huan ; Zhang, Zeyu ; Yin, Dong ; Crabtree, Mark</creatorcontrib><description>Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model. Prior to inducing A/R injury, rat cardiomyocyte-derived cell line H9c2 was stimulated with 8 μM of Tanshinone IIA for 48 hours. When compared with the A/R group, the Tanshinone IIA treatment significantly increased cell viability and decreased lactate dehydrogenase activity. Tanshinone IIA upregulated 14-3-3η expression and facilitated Bcl-2 translocation to the mitochondrial outer membrane, which bound with voltage-dependent anion channel 1. In addition, pretreatment with Tanshinone IIA reduced the generation of reactive oxygen species and cytochrome c release, inactivated caspase-3, prevented mitochondrial permeability transition pore opening, and reduced the percentage of apoptotic cells. Moreover, treatment with Tanshinone IIA reduced the level of malondialdehyde, thereby increasing the activity of superoxide dismutase and glutathione peroxidase. Silencing the expression of 14-3-3η by adenovirus blocked the above-mentioned results. These novel findings showed that pretreatment with Tanshinone IIA alleviated H9c2 cell damage against A/R injury and was associated with upregulation of 14-3-3η, thereby facilitating Bcl-2 translocation to the mitochondrial outer membrane and preventing mitochondrial permeability transition pore opening, decreasing cytochrome c release, preventing caspase-3 activation, and restraining apoptosis.</description><identifier>ISSN: 1942-0900</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2018/3583921</identifier><identifier>PMID: 30050654</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>14-3-3 Proteins - metabolism ; Animals ; Apoptosis ; Apoptosis - drug effects ; Bioengineering ; Biological products ; Biological Transport - drug effects ; Biomarkers ; Cardiomyocytes ; Cell culture ; Cell Line ; Cell Survival - drug effects ; Diterpenes, Abietane - therapeutic use ; Enzymes ; Immunoprecipitation ; Ischemia ; L-Lactate Dehydrogenase - metabolism ; Lipid Peroxidation - drug effects ; Medical research ; Microscopy, Confocal ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial Membrane Transport Proteins - drug effects ; Mitochondrial Membrane Transport Proteins - metabolism ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Oxidative stress ; Permeability ; Pharmacology ; Physiology ; Proteins ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Rats ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Rodents</subject><ispartof>Oxidative medicine and cellular longevity, 2018-01, Vol.2018 (2018), p.1-13</ispartof><rights>Copyright © 2018 Zeyu Zhang et al.</rights><rights>Copyright © 2018 Zeyu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2018 Zeyu Zhang et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-f12de51d4b8b629ee059e65fcc7e32cfab66c33712ae4d1b7b0ff87978a185fa3</citedby><cites>FETCH-LOGICAL-c471t-f12de51d4b8b629ee059e65fcc7e32cfab66c33712ae4d1b7b0ff87978a185fa3</cites><orcidid>0000-0003-1147-903X ; 0000-0002-2869-4521 ; 0000-0002-1007-3583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046124/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046124/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30050654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Crabtree, Mark</contributor><creatorcontrib>He, Ming</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Wu, Zelong</creatorcontrib><creatorcontrib>Huang, Jiyi</creatorcontrib><creatorcontrib>Qiao, Yang</creatorcontrib><creatorcontrib>He, Huan</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Yin, Dong</creatorcontrib><title>Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η</title><title>Oxidative medicine and cellular longevity</title><addtitle>Oxid Med Cell Longev</addtitle><description>Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model. Prior to inducing A/R injury, rat cardiomyocyte-derived cell line H9c2 was stimulated with 8 μM of Tanshinone IIA for 48 hours. When compared with the A/R group, the Tanshinone IIA treatment significantly increased cell viability and decreased lactate dehydrogenase activity. Tanshinone IIA upregulated 14-3-3η expression and facilitated Bcl-2 translocation to the mitochondrial outer membrane, which bound with voltage-dependent anion channel 1. In addition, pretreatment with Tanshinone IIA reduced the generation of reactive oxygen species and cytochrome c release, inactivated caspase-3, prevented mitochondrial permeability transition pore opening, and reduced the percentage of apoptotic cells. Moreover, treatment with Tanshinone IIA reduced the level of malondialdehyde, thereby increasing the activity of superoxide dismutase and glutathione peroxidase. Silencing the expression of 14-3-3η by adenovirus blocked the above-mentioned results. These novel findings showed that pretreatment with Tanshinone IIA alleviated H9c2 cell damage against A/R injury and was associated with upregulation of 14-3-3η, thereby facilitating Bcl-2 translocation to the mitochondrial outer membrane and preventing mitochondrial permeability transition pore opening, decreasing cytochrome c release, preventing caspase-3 activation, and restraining apoptosis.</description><subject>14-3-3 Proteins - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Bioengineering</subject><subject>Biological products</subject><subject>Biological Transport - drug effects</subject><subject>Biomarkers</subject><subject>Cardiomyocytes</subject><subject>Cell culture</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Diterpenes, Abietane - therapeutic use</subject><subject>Enzymes</subject><subject>Immunoprecipitation</subject><subject>Ischemia</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>Lipid Peroxidation - drug effects</subject><subject>Medical research</subject><subject>Microscopy, Confocal</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - drug effects</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Oxidative stress</subject><subject>Permeability</subject><subject>Pharmacology</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Rats</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rodents</subject><issn>1942-0900</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkctuEzEUhkcIREthxxpZYoNUhvg2njELpDQCGqkVCIX1yOM5ThxN7NZ2QvM8PARvwTPhkBAuK1bHl0-_z_FXFE8JfkVIVY0oJs2IVQ2TlNwrTonktMRS8vvHNcYnxaMYlxgLRjl5WJwwjCssKn5afJ0pFxfWeQdoOh2jjwFSAJVW4FLe-AQ6RXQpNUUTGIaI1FxZFxMaO39n1egT-LvtHJxK1js0dct12L7OdeOHDfwM8QalBaBZyA8NXu_BfHihh5Ki5NG1TV4vvOuDVegaeqsS9KjbIsJLVrLv3x4XD4waIjw51LPi87u3s8llefXh_XQyvio1r0kqDaE9VKTnXdMJKgFwJUFURusaGNVGdUJoxmpCFfCedHWHjWlqWTeKNJVR7Kx4s8-9WXcr6HXuPqihvQl2pcK29cq2f984u2jnftMKzAWhPAe8OAQEf7uGmNqVjTp_m3Lg17GluG6qWhIiMvr8H3Tp18Hl8TIlBMNCsh31ck_p4GMMYI7NENzu7Lc7--3Bfsaf_TnAEf6lOwPneyAb79UX-59xkBkw6jdNCaE1Yz8ArOPDgA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>He, Ming</creator><creator>Xu, Ping</creator><creator>Wu, Zelong</creator><creator>Huang, Jiyi</creator><creator>Qiao, Yang</creator><creator>He, Huan</creator><creator>Zhang, Zeyu</creator><creator>Yin, Dong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1147-903X</orcidid><orcidid>https://orcid.org/0000-0002-2869-4521</orcidid><orcidid>https://orcid.org/0000-0002-1007-3583</orcidid></search><sort><creationdate>20180101</creationdate><title>Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η</title><author>He, Ming ; Xu, Ping ; Wu, Zelong ; Huang, Jiyi ; Qiao, Yang ; He, Huan ; Zhang, Zeyu ; Yin, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-f12de51d4b8b629ee059e65fcc7e32cfab66c33712ae4d1b7b0ff87978a185fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>14-3-3 Proteins - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Bioengineering</topic><topic>Biological products</topic><topic>Biological Transport - drug effects</topic><topic>Biomarkers</topic><topic>Cardiomyocytes</topic><topic>Cell culture</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Diterpenes, Abietane - therapeutic use</topic><topic>Enzymes</topic><topic>Immunoprecipitation</topic><topic>Ischemia</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>Lipid Peroxidation - drug effects</topic><topic>Medical research</topic><topic>Microscopy, Confocal</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - drug effects</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Oxidative stress</topic><topic>Permeability</topic><topic>Pharmacology</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Rats</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ming</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Wu, Zelong</creatorcontrib><creatorcontrib>Huang, Jiyi</creatorcontrib><creatorcontrib>Qiao, Yang</creatorcontrib><creatorcontrib>He, Huan</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Yin, Dong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ming</au><au>Xu, Ping</au><au>Wu, Zelong</au><au>Huang, Jiyi</au><au>Qiao, Yang</au><au>He, Huan</au><au>Zhang, Zeyu</au><au>Yin, Dong</au><au>Crabtree, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><addtitle>Oxid Med Cell Longev</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1942-0900</issn><eissn>1942-0994</eissn><abstract>Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model. Prior to inducing A/R injury, rat cardiomyocyte-derived cell line H9c2 was stimulated with 8 μM of Tanshinone IIA for 48 hours. When compared with the A/R group, the Tanshinone IIA treatment significantly increased cell viability and decreased lactate dehydrogenase activity. Tanshinone IIA upregulated 14-3-3η expression and facilitated Bcl-2 translocation to the mitochondrial outer membrane, which bound with voltage-dependent anion channel 1. In addition, pretreatment with Tanshinone IIA reduced the generation of reactive oxygen species and cytochrome c release, inactivated caspase-3, prevented mitochondrial permeability transition pore opening, and reduced the percentage of apoptotic cells. Moreover, treatment with Tanshinone IIA reduced the level of malondialdehyde, thereby increasing the activity of superoxide dismutase and glutathione peroxidase. Silencing the expression of 14-3-3η by adenovirus blocked the above-mentioned results. These novel findings showed that pretreatment with Tanshinone IIA alleviated H9c2 cell damage against A/R injury and was associated with upregulation of 14-3-3η, thereby facilitating Bcl-2 translocation to the mitochondrial outer membrane and preventing mitochondrial permeability transition pore opening, decreasing cytochrome c release, preventing caspase-3 activation, and restraining apoptosis.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>30050654</pmid><doi>10.1155/2018/3583921</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1147-903X</orcidid><orcidid>https://orcid.org/0000-0002-2869-4521</orcidid><orcidid>https://orcid.org/0000-0002-1007-3583</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-0900 |
ispartof | Oxidative medicine and cellular longevity, 2018-01, Vol.2018 (2018), p.1-13 |
issn | 1942-0900 1942-0994 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6046124 |
source | MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | 14-3-3 Proteins - metabolism Animals Apoptosis Apoptosis - drug effects Bioengineering Biological products Biological Transport - drug effects Biomarkers Cardiomyocytes Cell culture Cell Line Cell Survival - drug effects Diterpenes, Abietane - therapeutic use Enzymes Immunoprecipitation Ischemia L-Lactate Dehydrogenase - metabolism Lipid Peroxidation - drug effects Medical research Microscopy, Confocal Mitochondria Mitochondria - drug effects Mitochondria - metabolism Mitochondrial Membrane Transport Proteins - drug effects Mitochondrial Membrane Transport Proteins - metabolism Myocytes, Cardiac - drug effects Myocytes, Cardiac - metabolism Oxidative stress Permeability Pharmacology Physiology Proteins Proto-Oncogene Proteins c-bcl-2 - metabolism Rats Reactive oxygen species Reactive Oxygen Species - metabolism Rodents |
title | Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tanshinone%20IIA%20Pretreatment%20Protects%20H9c2%20Cells%20against%20Anoxia/Reoxygenation%20Injury:%20Involvement%20of%20the%20Translocation%20of%20Bcl-2%20to%20Mitochondria%20Mediated%20by%2014-3-3%CE%B7&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=He,%20Ming&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2018/3583921&rft_dat=%3Cproquest_pubme%3E2078579116%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066306936&rft_id=info:pmid/30050654&rfr_iscdi=true |