Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η

Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2018-01, Vol.2018 (2018), p.1-13
Hauptverfasser: He, Ming, Xu, Ping, Wu, Zelong, Huang, Jiyi, Qiao, Yang, He, Huan, Zhang, Zeyu, Yin, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2018
container_start_page 1
container_title Oxidative medicine and cellular longevity
container_volume 2018
creator He, Ming
Xu, Ping
Wu, Zelong
Huang, Jiyi
Qiao, Yang
He, Huan
Zhang, Zeyu
Yin, Dong
description Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model. Prior to inducing A/R injury, rat cardiomyocyte-derived cell line H9c2 was stimulated with 8 μM of Tanshinone IIA for 48 hours. When compared with the A/R group, the Tanshinone IIA treatment significantly increased cell viability and decreased lactate dehydrogenase activity. Tanshinone IIA upregulated 14-3-3η expression and facilitated Bcl-2 translocation to the mitochondrial outer membrane, which bound with voltage-dependent anion channel 1. In addition, pretreatment with Tanshinone IIA reduced the generation of reactive oxygen species and cytochrome c release, inactivated caspase-3, prevented mitochondrial permeability transition pore opening, and reduced the percentage of apoptotic cells. Moreover, treatment with Tanshinone IIA reduced the level of malondialdehyde, thereby increasing the activity of superoxide dismutase and glutathione peroxidase. Silencing the expression of 14-3-3η by adenovirus blocked the above-mentioned results. These novel findings showed that pretreatment with Tanshinone IIA alleviated H9c2 cell damage against A/R injury and was associated with upregulation of 14-3-3η, thereby facilitating Bcl-2 translocation to the mitochondrial outer membrane and preventing mitochondrial permeability transition pore opening, decreasing cytochrome c release, preventing caspase-3 activation, and restraining apoptosis.
doi_str_mv 10.1155/2018/3583921
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6046124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2078579116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-f12de51d4b8b629ee059e65fcc7e32cfab66c33712ae4d1b7b0ff87978a185fa3</originalsourceid><addsrcrecordid>eNqNkctuEzEUhkcIREthxxpZYoNUhvg2njELpDQCGqkVCIX1yOM5ThxN7NZ2QvM8PARvwTPhkBAuK1bHl0-_z_FXFE8JfkVIVY0oJs2IVQ2TlNwrTonktMRS8vvHNcYnxaMYlxgLRjl5WJwwjCssKn5afJ0pFxfWeQdoOh2jjwFSAJVW4FLe-AQ6RXQpNUUTGIaI1FxZFxMaO39n1egT-LvtHJxK1js0dct12L7OdeOHDfwM8QalBaBZyA8NXu_BfHihh5Ki5NG1TV4vvOuDVegaeqsS9KjbIsJLVrLv3x4XD4waIjw51LPi87u3s8llefXh_XQyvio1r0kqDaE9VKTnXdMJKgFwJUFURusaGNVGdUJoxmpCFfCedHWHjWlqWTeKNJVR7Kx4s8-9WXcr6HXuPqihvQl2pcK29cq2f984u2jnftMKzAWhPAe8OAQEf7uGmNqVjTp_m3Lg17GluG6qWhIiMvr8H3Tp18Hl8TIlBMNCsh31ck_p4GMMYI7NENzu7Lc7--3Bfsaf_TnAEf6lOwPneyAb79UX-59xkBkw6jdNCaE1Yz8ArOPDgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066306936</pqid></control><display><type>article</type><title>Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>He, Ming ; Xu, Ping ; Wu, Zelong ; Huang, Jiyi ; Qiao, Yang ; He, Huan ; Zhang, Zeyu ; Yin, Dong</creator><contributor>Crabtree, Mark</contributor><creatorcontrib>He, Ming ; Xu, Ping ; Wu, Zelong ; Huang, Jiyi ; Qiao, Yang ; He, Huan ; Zhang, Zeyu ; Yin, Dong ; Crabtree, Mark</creatorcontrib><description>Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model. Prior to inducing A/R injury, rat cardiomyocyte-derived cell line H9c2 was stimulated with 8 μM of Tanshinone IIA for 48 hours. When compared with the A/R group, the Tanshinone IIA treatment significantly increased cell viability and decreased lactate dehydrogenase activity. Tanshinone IIA upregulated 14-3-3η expression and facilitated Bcl-2 translocation to the mitochondrial outer membrane, which bound with voltage-dependent anion channel 1. In addition, pretreatment with Tanshinone IIA reduced the generation of reactive oxygen species and cytochrome c release, inactivated caspase-3, prevented mitochondrial permeability transition pore opening, and reduced the percentage of apoptotic cells. Moreover, treatment with Tanshinone IIA reduced the level of malondialdehyde, thereby increasing the activity of superoxide dismutase and glutathione peroxidase. Silencing the expression of 14-3-3η by adenovirus blocked the above-mentioned results. These novel findings showed that pretreatment with Tanshinone IIA alleviated H9c2 cell damage against A/R injury and was associated with upregulation of 14-3-3η, thereby facilitating Bcl-2 translocation to the mitochondrial outer membrane and preventing mitochondrial permeability transition pore opening, decreasing cytochrome c release, preventing caspase-3 activation, and restraining apoptosis.</description><identifier>ISSN: 1942-0900</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2018/3583921</identifier><identifier>PMID: 30050654</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>14-3-3 Proteins - metabolism ; Animals ; Apoptosis ; Apoptosis - drug effects ; Bioengineering ; Biological products ; Biological Transport - drug effects ; Biomarkers ; Cardiomyocytes ; Cell culture ; Cell Line ; Cell Survival - drug effects ; Diterpenes, Abietane - therapeutic use ; Enzymes ; Immunoprecipitation ; Ischemia ; L-Lactate Dehydrogenase - metabolism ; Lipid Peroxidation - drug effects ; Medical research ; Microscopy, Confocal ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial Membrane Transport Proteins - drug effects ; Mitochondrial Membrane Transport Proteins - metabolism ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Oxidative stress ; Permeability ; Pharmacology ; Physiology ; Proteins ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Rats ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Rodents</subject><ispartof>Oxidative medicine and cellular longevity, 2018-01, Vol.2018 (2018), p.1-13</ispartof><rights>Copyright © 2018 Zeyu Zhang et al.</rights><rights>Copyright © 2018 Zeyu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2018 Zeyu Zhang et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-f12de51d4b8b629ee059e65fcc7e32cfab66c33712ae4d1b7b0ff87978a185fa3</citedby><cites>FETCH-LOGICAL-c471t-f12de51d4b8b629ee059e65fcc7e32cfab66c33712ae4d1b7b0ff87978a185fa3</cites><orcidid>0000-0003-1147-903X ; 0000-0002-2869-4521 ; 0000-0002-1007-3583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046124/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6046124/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30050654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Crabtree, Mark</contributor><creatorcontrib>He, Ming</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Wu, Zelong</creatorcontrib><creatorcontrib>Huang, Jiyi</creatorcontrib><creatorcontrib>Qiao, Yang</creatorcontrib><creatorcontrib>He, Huan</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Yin, Dong</creatorcontrib><title>Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η</title><title>Oxidative medicine and cellular longevity</title><addtitle>Oxid Med Cell Longev</addtitle><description>Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model. Prior to inducing A/R injury, rat cardiomyocyte-derived cell line H9c2 was stimulated with 8 μM of Tanshinone IIA for 48 hours. When compared with the A/R group, the Tanshinone IIA treatment significantly increased cell viability and decreased lactate dehydrogenase activity. Tanshinone IIA upregulated 14-3-3η expression and facilitated Bcl-2 translocation to the mitochondrial outer membrane, which bound with voltage-dependent anion channel 1. In addition, pretreatment with Tanshinone IIA reduced the generation of reactive oxygen species and cytochrome c release, inactivated caspase-3, prevented mitochondrial permeability transition pore opening, and reduced the percentage of apoptotic cells. Moreover, treatment with Tanshinone IIA reduced the level of malondialdehyde, thereby increasing the activity of superoxide dismutase and glutathione peroxidase. Silencing the expression of 14-3-3η by adenovirus blocked the above-mentioned results. These novel findings showed that pretreatment with Tanshinone IIA alleviated H9c2 cell damage against A/R injury and was associated with upregulation of 14-3-3η, thereby facilitating Bcl-2 translocation to the mitochondrial outer membrane and preventing mitochondrial permeability transition pore opening, decreasing cytochrome c release, preventing caspase-3 activation, and restraining apoptosis.</description><subject>14-3-3 Proteins - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Bioengineering</subject><subject>Biological products</subject><subject>Biological Transport - drug effects</subject><subject>Biomarkers</subject><subject>Cardiomyocytes</subject><subject>Cell culture</subject><subject>Cell Line</subject><subject>Cell Survival - drug effects</subject><subject>Diterpenes, Abietane - therapeutic use</subject><subject>Enzymes</subject><subject>Immunoprecipitation</subject><subject>Ischemia</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>Lipid Peroxidation - drug effects</subject><subject>Medical research</subject><subject>Microscopy, Confocal</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - drug effects</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Oxidative stress</subject><subject>Permeability</subject><subject>Pharmacology</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Rats</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rodents</subject><issn>1942-0900</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkctuEzEUhkcIREthxxpZYoNUhvg2njELpDQCGqkVCIX1yOM5ThxN7NZ2QvM8PARvwTPhkBAuK1bHl0-_z_FXFE8JfkVIVY0oJs2IVQ2TlNwrTonktMRS8vvHNcYnxaMYlxgLRjl5WJwwjCssKn5afJ0pFxfWeQdoOh2jjwFSAJVW4FLe-AQ6RXQpNUUTGIaI1FxZFxMaO39n1egT-LvtHJxK1js0dct12L7OdeOHDfwM8QalBaBZyA8NXu_BfHihh5Ki5NG1TV4vvOuDVegaeqsS9KjbIsJLVrLv3x4XD4waIjw51LPi87u3s8llefXh_XQyvio1r0kqDaE9VKTnXdMJKgFwJUFURusaGNVGdUJoxmpCFfCedHWHjWlqWTeKNJVR7Kx4s8-9WXcr6HXuPqihvQl2pcK29cq2f984u2jnftMKzAWhPAe8OAQEf7uGmNqVjTp_m3Lg17GluG6qWhIiMvr8H3Tp18Hl8TIlBMNCsh31ck_p4GMMYI7NENzu7Lc7--3Bfsaf_TnAEf6lOwPneyAb79UX-59xkBkw6jdNCaE1Yz8ArOPDgA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>He, Ming</creator><creator>Xu, Ping</creator><creator>Wu, Zelong</creator><creator>Huang, Jiyi</creator><creator>Qiao, Yang</creator><creator>He, Huan</creator><creator>Zhang, Zeyu</creator><creator>Yin, Dong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1147-903X</orcidid><orcidid>https://orcid.org/0000-0002-2869-4521</orcidid><orcidid>https://orcid.org/0000-0002-1007-3583</orcidid></search><sort><creationdate>20180101</creationdate><title>Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η</title><author>He, Ming ; Xu, Ping ; Wu, Zelong ; Huang, Jiyi ; Qiao, Yang ; He, Huan ; Zhang, Zeyu ; Yin, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-f12de51d4b8b629ee059e65fcc7e32cfab66c33712ae4d1b7b0ff87978a185fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>14-3-3 Proteins - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Bioengineering</topic><topic>Biological products</topic><topic>Biological Transport - drug effects</topic><topic>Biomarkers</topic><topic>Cardiomyocytes</topic><topic>Cell culture</topic><topic>Cell Line</topic><topic>Cell Survival - drug effects</topic><topic>Diterpenes, Abietane - therapeutic use</topic><topic>Enzymes</topic><topic>Immunoprecipitation</topic><topic>Ischemia</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>Lipid Peroxidation - drug effects</topic><topic>Medical research</topic><topic>Microscopy, Confocal</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - drug effects</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Oxidative stress</topic><topic>Permeability</topic><topic>Pharmacology</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Rats</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ming</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Wu, Zelong</creatorcontrib><creatorcontrib>Huang, Jiyi</creatorcontrib><creatorcontrib>Qiao, Yang</creatorcontrib><creatorcontrib>He, Huan</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Yin, Dong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ming</au><au>Xu, Ping</au><au>Wu, Zelong</au><au>Huang, Jiyi</au><au>Qiao, Yang</au><au>He, Huan</au><au>Zhang, Zeyu</au><au>Yin, Dong</au><au>Crabtree, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><addtitle>Oxid Med Cell Longev</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1942-0900</issn><eissn>1942-0994</eissn><abstract>Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model. Prior to inducing A/R injury, rat cardiomyocyte-derived cell line H9c2 was stimulated with 8 μM of Tanshinone IIA for 48 hours. When compared with the A/R group, the Tanshinone IIA treatment significantly increased cell viability and decreased lactate dehydrogenase activity. Tanshinone IIA upregulated 14-3-3η expression and facilitated Bcl-2 translocation to the mitochondrial outer membrane, which bound with voltage-dependent anion channel 1. In addition, pretreatment with Tanshinone IIA reduced the generation of reactive oxygen species and cytochrome c release, inactivated caspase-3, prevented mitochondrial permeability transition pore opening, and reduced the percentage of apoptotic cells. Moreover, treatment with Tanshinone IIA reduced the level of malondialdehyde, thereby increasing the activity of superoxide dismutase and glutathione peroxidase. Silencing the expression of 14-3-3η by adenovirus blocked the above-mentioned results. These novel findings showed that pretreatment with Tanshinone IIA alleviated H9c2 cell damage against A/R injury and was associated with upregulation of 14-3-3η, thereby facilitating Bcl-2 translocation to the mitochondrial outer membrane and preventing mitochondrial permeability transition pore opening, decreasing cytochrome c release, preventing caspase-3 activation, and restraining apoptosis.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>30050654</pmid><doi>10.1155/2018/3583921</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1147-903X</orcidid><orcidid>https://orcid.org/0000-0002-2869-4521</orcidid><orcidid>https://orcid.org/0000-0002-1007-3583</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-0900
ispartof Oxidative medicine and cellular longevity, 2018-01, Vol.2018 (2018), p.1-13
issn 1942-0900
1942-0994
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6046124
source MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects 14-3-3 Proteins - metabolism
Animals
Apoptosis
Apoptosis - drug effects
Bioengineering
Biological products
Biological Transport - drug effects
Biomarkers
Cardiomyocytes
Cell culture
Cell Line
Cell Survival - drug effects
Diterpenes, Abietane - therapeutic use
Enzymes
Immunoprecipitation
Ischemia
L-Lactate Dehydrogenase - metabolism
Lipid Peroxidation - drug effects
Medical research
Microscopy, Confocal
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial Membrane Transport Proteins - drug effects
Mitochondrial Membrane Transport Proteins - metabolism
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Oxidative stress
Permeability
Pharmacology
Physiology
Proteins
Proto-Oncogene Proteins c-bcl-2 - metabolism
Rats
Reactive oxygen species
Reactive Oxygen Species - metabolism
Rodents
title Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tanshinone%20IIA%20Pretreatment%20Protects%20H9c2%20Cells%20against%20Anoxia/Reoxygenation%20Injury:%20Involvement%20of%20the%20Translocation%20of%20Bcl-2%20to%20Mitochondria%20Mediated%20by%2014-3-3%CE%B7&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=He,%20Ming&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2018/3583921&rft_dat=%3Cproquest_pubme%3E2078579116%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066306936&rft_id=info:pmid/30050654&rfr_iscdi=true