Ethanol stimulates the in vivo axonal movement of neuropeptide dense‐core vesicles in Drosophila motor neurons
Proper neuronal function requires essential biological cargoes to be packaged within membranous vesicles and transported, intracellularly, through the extensive outgrowth of axonal and dendritic fibers. The precise spatiotemporal movement of these cargoes is vital for neuronal survival and, thus, is...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2018-02, Vol.144 (4), p.466-482 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 482 |
---|---|
container_issue | 4 |
container_start_page | 466 |
container_title | Journal of neurochemistry |
container_volume | 144 |
creator | Iacobucci, Gary J. Gunawardena, Shermali |
description | Proper neuronal function requires essential biological cargoes to be packaged within membranous vesicles and transported, intracellularly, through the extensive outgrowth of axonal and dendritic fibers. The precise spatiotemporal movement of these cargoes is vital for neuronal survival and, thus, is highly regulated. In this study we test how the axonal movement of a neuropeptide‐containing dense‐core vesicle (DCV) responds to alcohol stressors. We found that ethanol induces a strong anterograde bias in vesicle movement. Low doses of ethanol stimulate the anterograde movement of neuropeptide‐DCV while high doses inhibit bi‐directional movement. This process required the presence of functional kinesin‐1 motors as reduction in kinesin prevented the ethanol‐induced stimulation of the anterograde movement of neuropeptide‐DCV. Furthermore, expression of inactive glycogen synthase kinase 3 (GSK‐3β) also prevented ethanol‐induced stimulation of neuropeptide‐DCV movement, similar to pharmacological inhibition of GSK‐3β with lithium. Conversely, inhibition of PI3K/AKT signaling with wortmannin led to a partial prevention of ethanol‐stimulated transport of neuropeptide‐DCV. Taken together, we conclude that GSK‐3β signaling mediates the stimulatory effects of ethanol. Therefore, our study provides new insight into the physiological response of the axonal movement of neuropeptide‐DCV to exogenous stressors.
Cover Image for this Issue: doi: 10.1111/jnc.14165.
Ethanol is a widely abused drug, but detailed physiological and molecular effects of ethanol consumption are only recently being understood. For Drosophila, ethanol is a naturally occurring environmental chemical that elicits behavioral changes making them an ideal model system for studying the effects of ethanol. This study found that, in Drosophila, low doses of ethanol results in the stimulation of neuropeptide vesicle transport with a bias toward the anterograde direction. We propose that this effect is mediated via GSK‐3β‐mediated modulation of kinesin‐1 motor proteins. Thus, modulation of peptideric neurons may underlie the toxic and behavioral effects of ethanol and provide a novel target for therapeutics.
Cover Image for this Issue: doi: 10.1111/jnc.14165. |
doi_str_mv | 10.1111/jnc.14230 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6046090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1945216286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-8f9a2ee3c6d57e22b605a9e59c60b6297e9fe8247f96f1192b68e8498046a1933</originalsourceid><addsrcrecordid>eNp1kUFu1DAUhi0EotPCggsgS2zaRVrbcZx4g1QNhYKqsoG15fG8MB45dmonKd31CD0CZ-EonAS3KRUg1Zu38Pc-_Xo_Qq8oOaT5HW29OaScleQJWlBe04LTSj5FC0IYK0rC2Q7aTWlLCBVc0OdohzVSkJKWC3RxMmy0Dw6nwXaj0wMkPGwAW__zx2SngPX34LXDXZigAz_g0GIPYww99INdA16DT_Dr-saECHiCZI3LCuvxuxhS6DfW6bw8hDiv-fQCPWu1S_Dyfu6hr-9PvixPi7PPHz4uj88Kw3lJiqaVmgGURqyrGhhbCVJpCZU0gqwEkzXIFhrG61aKllKZgQYaLhvChaayLPfQ29nbj6sO1iaHj9qpPtpOxysVtFX__ni7Ud_CpEQ2EEmyYP9eEMPFCGlQnU0GnNMewpgUlbxiVLBGZPTNf-g2jDHfLSlGaF0TKarbRAczZfJpUoT2IQwl6rZIlYtUd0Vm9vXf6R_IP81l4GgGLq2Dq8dN6tP5clb-BoCwqxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017709653</pqid></control><display><type>article</type><title>Ethanol stimulates the in vivo axonal movement of neuropeptide dense‐core vesicles in Drosophila motor neurons</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Iacobucci, Gary J. ; Gunawardena, Shermali</creator><creatorcontrib>Iacobucci, Gary J. ; Gunawardena, Shermali</creatorcontrib><description>Proper neuronal function requires essential biological cargoes to be packaged within membranous vesicles and transported, intracellularly, through the extensive outgrowth of axonal and dendritic fibers. The precise spatiotemporal movement of these cargoes is vital for neuronal survival and, thus, is highly regulated. In this study we test how the axonal movement of a neuropeptide‐containing dense‐core vesicle (DCV) responds to alcohol stressors. We found that ethanol induces a strong anterograde bias in vesicle movement. Low doses of ethanol stimulate the anterograde movement of neuropeptide‐DCV while high doses inhibit bi‐directional movement. This process required the presence of functional kinesin‐1 motors as reduction in kinesin prevented the ethanol‐induced stimulation of the anterograde movement of neuropeptide‐DCV. Furthermore, expression of inactive glycogen synthase kinase 3 (GSK‐3β) also prevented ethanol‐induced stimulation of neuropeptide‐DCV movement, similar to pharmacological inhibition of GSK‐3β with lithium. Conversely, inhibition of PI3K/AKT signaling with wortmannin led to a partial prevention of ethanol‐stimulated transport of neuropeptide‐DCV. Taken together, we conclude that GSK‐3β signaling mediates the stimulatory effects of ethanol. Therefore, our study provides new insight into the physiological response of the axonal movement of neuropeptide‐DCV to exogenous stressors.
Cover Image for this Issue: doi: 10.1111/jnc.14165.
Ethanol is a widely abused drug, but detailed physiological and molecular effects of ethanol consumption are only recently being understood. For Drosophila, ethanol is a naturally occurring environmental chemical that elicits behavioral changes making them an ideal model system for studying the effects of ethanol. This study found that, in Drosophila, low doses of ethanol results in the stimulation of neuropeptide vesicle transport with a bias toward the anterograde direction. We propose that this effect is mediated via GSK‐3β‐mediated modulation of kinesin‐1 motor proteins. Thus, modulation of peptideric neurons may underlie the toxic and behavioral effects of ethanol and provide a novel target for therapeutics.
Cover Image for this Issue: doi: 10.1111/jnc.14165.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/jnc.14230</identifier><identifier>PMID: 28960313</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>1-Phosphatidylinositol 3-kinase ; AKT protein ; Alcohols ; Animals ; atrial natriuretic peptide ; Axonal Transport - drug effects ; Axons - drug effects ; Axons - metabolism ; Central Nervous System Depressants - pharmacology ; Dense core vesicles ; dense‐core vesicle transport ; Drosophila ; Drosophila - physiology ; Ethanol ; Ethanol - pharmacology ; Fibers ; Fruit flies ; Glycogen ; Glycogen synthase kinase 3 ; Glycogen Synthase Kinase 3 beta - antagonists & inhibitors ; Glycogen Synthase Kinase 3 beta - metabolism ; glycogen synthase kinase 3β ; Immunohistochemistry ; In vivo methods and tests ; Inhibition ; Kinesin ; Kinesin - physiology ; Larva ; Lithium ; Lithium - pharmacology ; Motor neurons ; Motor Neurons - drug effects ; Motor Neurons - metabolism ; Neuropeptides ; Neuropeptides - metabolism ; Pharmacology ; Phosphatidylinositol 3-Kinases - antagonists & inhibitors ; Physiological effects ; Signal Transduction - drug effects ; Signaling ; Stimulation ; Stimulation, Chemical ; Synaptic Vesicles - drug effects ; Synaptic Vesicles - metabolism ; Vesicles ; Wortmannin ; Wortmannin - pharmacology</subject><ispartof>Journal of neurochemistry, 2018-02, Vol.144 (4), p.466-482</ispartof><rights>2017 International Society for Neurochemistry</rights><rights>2017 International Society for Neurochemistry.</rights><rights>Copyright © 2018 International Society for Neurochemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-8f9a2ee3c6d57e22b605a9e59c60b6297e9fe8247f96f1192b68e8498046a1933</citedby><cites>FETCH-LOGICAL-c4430-8f9a2ee3c6d57e22b605a9e59c60b6297e9fe8247f96f1192b68e8498046a1933</cites><orcidid>0000-0001-7596-8380 ; 0000-0001-8776-9397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjnc.14230$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjnc.14230$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28960313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iacobucci, Gary J.</creatorcontrib><creatorcontrib>Gunawardena, Shermali</creatorcontrib><title>Ethanol stimulates the in vivo axonal movement of neuropeptide dense‐core vesicles in Drosophila motor neurons</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Proper neuronal function requires essential biological cargoes to be packaged within membranous vesicles and transported, intracellularly, through the extensive outgrowth of axonal and dendritic fibers. The precise spatiotemporal movement of these cargoes is vital for neuronal survival and, thus, is highly regulated. In this study we test how the axonal movement of a neuropeptide‐containing dense‐core vesicle (DCV) responds to alcohol stressors. We found that ethanol induces a strong anterograde bias in vesicle movement. Low doses of ethanol stimulate the anterograde movement of neuropeptide‐DCV while high doses inhibit bi‐directional movement. This process required the presence of functional kinesin‐1 motors as reduction in kinesin prevented the ethanol‐induced stimulation of the anterograde movement of neuropeptide‐DCV. Furthermore, expression of inactive glycogen synthase kinase 3 (GSK‐3β) also prevented ethanol‐induced stimulation of neuropeptide‐DCV movement, similar to pharmacological inhibition of GSK‐3β with lithium. Conversely, inhibition of PI3K/AKT signaling with wortmannin led to a partial prevention of ethanol‐stimulated transport of neuropeptide‐DCV. Taken together, we conclude that GSK‐3β signaling mediates the stimulatory effects of ethanol. Therefore, our study provides new insight into the physiological response of the axonal movement of neuropeptide‐DCV to exogenous stressors.
Cover Image for this Issue: doi: 10.1111/jnc.14165.
Ethanol is a widely abused drug, but detailed physiological and molecular effects of ethanol consumption are only recently being understood. For Drosophila, ethanol is a naturally occurring environmental chemical that elicits behavioral changes making them an ideal model system for studying the effects of ethanol. This study found that, in Drosophila, low doses of ethanol results in the stimulation of neuropeptide vesicle transport with a bias toward the anterograde direction. We propose that this effect is mediated via GSK‐3β‐mediated modulation of kinesin‐1 motor proteins. Thus, modulation of peptideric neurons may underlie the toxic and behavioral effects of ethanol and provide a novel target for therapeutics.
Cover Image for this Issue: doi: 10.1111/jnc.14165.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>AKT protein</subject><subject>Alcohols</subject><subject>Animals</subject><subject>atrial natriuretic peptide</subject><subject>Axonal Transport - drug effects</subject><subject>Axons - drug effects</subject><subject>Axons - metabolism</subject><subject>Central Nervous System Depressants - pharmacology</subject><subject>Dense core vesicles</subject><subject>dense‐core vesicle transport</subject><subject>Drosophila</subject><subject>Drosophila - physiology</subject><subject>Ethanol</subject><subject>Ethanol - pharmacology</subject><subject>Fibers</subject><subject>Fruit flies</subject><subject>Glycogen</subject><subject>Glycogen synthase kinase 3</subject><subject>Glycogen Synthase Kinase 3 beta - antagonists & inhibitors</subject><subject>Glycogen Synthase Kinase 3 beta - metabolism</subject><subject>glycogen synthase kinase 3β</subject><subject>Immunohistochemistry</subject><subject>In vivo methods and tests</subject><subject>Inhibition</subject><subject>Kinesin</subject><subject>Kinesin - physiology</subject><subject>Larva</subject><subject>Lithium</subject><subject>Lithium - pharmacology</subject><subject>Motor neurons</subject><subject>Motor Neurons - drug effects</subject><subject>Motor Neurons - metabolism</subject><subject>Neuropeptides</subject><subject>Neuropeptides - metabolism</subject><subject>Pharmacology</subject><subject>Phosphatidylinositol 3-Kinases - antagonists & inhibitors</subject><subject>Physiological effects</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Stimulation</subject><subject>Stimulation, Chemical</subject><subject>Synaptic Vesicles - drug effects</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Vesicles</subject><subject>Wortmannin</subject><subject>Wortmannin - pharmacology</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFu1DAUhi0EotPCggsgS2zaRVrbcZx4g1QNhYKqsoG15fG8MB45dmonKd31CD0CZ-EonAS3KRUg1Zu38Pc-_Xo_Qq8oOaT5HW29OaScleQJWlBe04LTSj5FC0IYK0rC2Q7aTWlLCBVc0OdohzVSkJKWC3RxMmy0Dw6nwXaj0wMkPGwAW__zx2SngPX34LXDXZigAz_g0GIPYww99INdA16DT_Dr-saECHiCZI3LCuvxuxhS6DfW6bw8hDiv-fQCPWu1S_Dyfu6hr-9PvixPi7PPHz4uj88Kw3lJiqaVmgGURqyrGhhbCVJpCZU0gqwEkzXIFhrG61aKllKZgQYaLhvChaayLPfQ29nbj6sO1iaHj9qpPtpOxysVtFX__ni7Ud_CpEQ2EEmyYP9eEMPFCGlQnU0GnNMewpgUlbxiVLBGZPTNf-g2jDHfLSlGaF0TKarbRAczZfJpUoT2IQwl6rZIlYtUd0Vm9vXf6R_IP81l4GgGLq2Dq8dN6tP5clb-BoCwqxs</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Iacobucci, Gary J.</creator><creator>Gunawardena, Shermali</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7596-8380</orcidid><orcidid>https://orcid.org/0000-0001-8776-9397</orcidid></search><sort><creationdate>201802</creationdate><title>Ethanol stimulates the in vivo axonal movement of neuropeptide dense‐core vesicles in Drosophila motor neurons</title><author>Iacobucci, Gary J. ; Gunawardena, Shermali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-8f9a2ee3c6d57e22b605a9e59c60b6297e9fe8247f96f1192b68e8498046a1933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>AKT protein</topic><topic>Alcohols</topic><topic>Animals</topic><topic>atrial natriuretic peptide</topic><topic>Axonal Transport - drug effects</topic><topic>Axons - drug effects</topic><topic>Axons - metabolism</topic><topic>Central Nervous System Depressants - pharmacology</topic><topic>Dense core vesicles</topic><topic>dense‐core vesicle transport</topic><topic>Drosophila</topic><topic>Drosophila - physiology</topic><topic>Ethanol</topic><topic>Ethanol - pharmacology</topic><topic>Fibers</topic><topic>Fruit flies</topic><topic>Glycogen</topic><topic>Glycogen synthase kinase 3</topic><topic>Glycogen Synthase Kinase 3 beta - antagonists & inhibitors</topic><topic>Glycogen Synthase Kinase 3 beta - metabolism</topic><topic>glycogen synthase kinase 3β</topic><topic>Immunohistochemistry</topic><topic>In vivo methods and tests</topic><topic>Inhibition</topic><topic>Kinesin</topic><topic>Kinesin - physiology</topic><topic>Larva</topic><topic>Lithium</topic><topic>Lithium - pharmacology</topic><topic>Motor neurons</topic><topic>Motor Neurons - drug effects</topic><topic>Motor Neurons - metabolism</topic><topic>Neuropeptides</topic><topic>Neuropeptides - metabolism</topic><topic>Pharmacology</topic><topic>Phosphatidylinositol 3-Kinases - antagonists & inhibitors</topic><topic>Physiological effects</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Stimulation</topic><topic>Stimulation, Chemical</topic><topic>Synaptic Vesicles - drug effects</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Vesicles</topic><topic>Wortmannin</topic><topic>Wortmannin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iacobucci, Gary J.</creatorcontrib><creatorcontrib>Gunawardena, Shermali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iacobucci, Gary J.</au><au>Gunawardena, Shermali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethanol stimulates the in vivo axonal movement of neuropeptide dense‐core vesicles in Drosophila motor neurons</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2018-02</date><risdate>2018</risdate><volume>144</volume><issue>4</issue><spage>466</spage><epage>482</epage><pages>466-482</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><abstract>Proper neuronal function requires essential biological cargoes to be packaged within membranous vesicles and transported, intracellularly, through the extensive outgrowth of axonal and dendritic fibers. The precise spatiotemporal movement of these cargoes is vital for neuronal survival and, thus, is highly regulated. In this study we test how the axonal movement of a neuropeptide‐containing dense‐core vesicle (DCV) responds to alcohol stressors. We found that ethanol induces a strong anterograde bias in vesicle movement. Low doses of ethanol stimulate the anterograde movement of neuropeptide‐DCV while high doses inhibit bi‐directional movement. This process required the presence of functional kinesin‐1 motors as reduction in kinesin prevented the ethanol‐induced stimulation of the anterograde movement of neuropeptide‐DCV. Furthermore, expression of inactive glycogen synthase kinase 3 (GSK‐3β) also prevented ethanol‐induced stimulation of neuropeptide‐DCV movement, similar to pharmacological inhibition of GSK‐3β with lithium. Conversely, inhibition of PI3K/AKT signaling with wortmannin led to a partial prevention of ethanol‐stimulated transport of neuropeptide‐DCV. Taken together, we conclude that GSK‐3β signaling mediates the stimulatory effects of ethanol. Therefore, our study provides new insight into the physiological response of the axonal movement of neuropeptide‐DCV to exogenous stressors.
Cover Image for this Issue: doi: 10.1111/jnc.14165.
Ethanol is a widely abused drug, but detailed physiological and molecular effects of ethanol consumption are only recently being understood. For Drosophila, ethanol is a naturally occurring environmental chemical that elicits behavioral changes making them an ideal model system for studying the effects of ethanol. This study found that, in Drosophila, low doses of ethanol results in the stimulation of neuropeptide vesicle transport with a bias toward the anterograde direction. We propose that this effect is mediated via GSK‐3β‐mediated modulation of kinesin‐1 motor proteins. Thus, modulation of peptideric neurons may underlie the toxic and behavioral effects of ethanol and provide a novel target for therapeutics.
Cover Image for this Issue: doi: 10.1111/jnc.14165.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>28960313</pmid><doi>10.1111/jnc.14230</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7596-8380</orcidid><orcidid>https://orcid.org/0000-0001-8776-9397</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2018-02, Vol.144 (4), p.466-482 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6046090 |
source | MEDLINE; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry |
subjects | 1-Phosphatidylinositol 3-kinase AKT protein Alcohols Animals atrial natriuretic peptide Axonal Transport - drug effects Axons - drug effects Axons - metabolism Central Nervous System Depressants - pharmacology Dense core vesicles dense‐core vesicle transport Drosophila Drosophila - physiology Ethanol Ethanol - pharmacology Fibers Fruit flies Glycogen Glycogen synthase kinase 3 Glycogen Synthase Kinase 3 beta - antagonists & inhibitors Glycogen Synthase Kinase 3 beta - metabolism glycogen synthase kinase 3β Immunohistochemistry In vivo methods and tests Inhibition Kinesin Kinesin - physiology Larva Lithium Lithium - pharmacology Motor neurons Motor Neurons - drug effects Motor Neurons - metabolism Neuropeptides Neuropeptides - metabolism Pharmacology Phosphatidylinositol 3-Kinases - antagonists & inhibitors Physiological effects Signal Transduction - drug effects Signaling Stimulation Stimulation, Chemical Synaptic Vesicles - drug effects Synaptic Vesicles - metabolism Vesicles Wortmannin Wortmannin - pharmacology |
title | Ethanol stimulates the in vivo axonal movement of neuropeptide dense‐core vesicles in Drosophila motor neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethanol%20stimulates%20the%20in%C2%A0vivo%20axonal%20movement%20of%20neuropeptide%20dense%E2%80%90core%20vesicles%20in%20Drosophila%20motor%20neurons&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Iacobucci,%20Gary%20J.&rft.date=2018-02&rft.volume=144&rft.issue=4&rft.spage=466&rft.epage=482&rft.pages=466-482&rft.issn=0022-3042&rft.eissn=1471-4159&rft_id=info:doi/10.1111/jnc.14230&rft_dat=%3Cproquest_pubme%3E1945216286%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017709653&rft_id=info:pmid/28960313&rfr_iscdi=true |