Imaging ERK and PKA Activation in Single Dendritic Spines during Structural Plasticity

Extracellular signal-regulated kinase (ERK) and protein kinase A (PKA) play important roles in LTP and spine structural plasticity. While fluorescence resonance energy transfer (FRET)-based sensors for these kinases had previously been developed, they did not provide sufficient sensitivity for imagi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2017-03, Vol.93 (6), p.1315-1324.e3
Hauptverfasser: Tang, Shen, Yasuda, Ryohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1324.e3
container_issue 6
container_start_page 1315
container_title Neuron (Cambridge, Mass.)
container_volume 93
creator Tang, Shen
Yasuda, Ryohei
description Extracellular signal-regulated kinase (ERK) and protein kinase A (PKA) play important roles in LTP and spine structural plasticity. While fluorescence resonance energy transfer (FRET)-based sensors for these kinases had previously been developed, they did not provide sufficient sensitivity for imaging small neuronal compartments, such as single dendritic spines in brain slices. Here we improved the sensitivity of FRET-based kinase sensors for monitoring kinase activity under two-photon fluorescence lifetime imaging microscopy (2pFLIM). Using these improved sensors, we succeeded in imaging ERK and PKA activation in single dendritic spines during structural long-term potentiation (sLTP) in hippocampal CA1 pyramidal neurons, revealing that the activation of these kinases spreads widely with length constants of more than 10 μm. The strategy for improvement of sensors used here should be applicable for developing highly sensitive biosensors for various protein kinases. [Display omitted] •Highly sensitive ERK and PKA FLIM sensors with novel fluorophore pair•Image ERK and PKA activation in single dendritic spines during structural plasticity•Mobile and immobilized sensors resolve spatiotemporal pattern of kinase activity Tang and Yasuda designed highly sensitive sensors for ERK and PKA and measured the spatiotemporal dynamics of the activation of these kinases in dendrites during spine structural plasticity of single dendritic spines.
doi_str_mv 10.1016/j.neuron.2017.02.032
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089662731730140X</els_id><sourcerecordid>1884269682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-aff00c59407fb0ac94a5ead767c499d1c77842543d4876253ecfee4766e1dbd3</originalsourceid><addsrcrecordid>eNp9UcFuEzEUtBAVDYU_QMgSFy67tb1ee31BitpSqlaiIhVXy7HfBkcbb7C9kfr3OEpbWg6c3uHNzJt5g9AHSmpKqDhd1wGmOIaaESprwmrSsFdoRomSFadKvUYz0ilRCSabY_Q2pTUhlLeKvkHHrGNd21E1Qz-vNmblwwpf_LjGJjh8ez3Hc5v9zmQ_BuwDXpT1APgcgos-e4sXWx8gYTfFPXGR42TzFM2AbweTCsDn-3foqDdDgvcP8wTdfb24O_tW3Xy_vDqb31S2bWWuTN8TYlvFieyXxFjFTQvGSSEtV8pRK2XHWcsbxzspWNuA7QG4FAKoW7rmBH05yG6n5QachZCLD72NfmPivR6N1y83wf_Sq3GnBeHlA7wIfH4QiOPvCVLWG58sDIMJME5J03K2oy1t9tBP_0DX4xRDSVdQxaVQomMFxQ8oG8eUIvRPZijR-970Wh960_veNGG69FZoH58HeSI9FvU3KZRv7jxEnayHYMH5CDZrN_r_X_gDEWqsDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884269682</pqid></control><display><type>article</type><title>Imaging ERK and PKA Activation in Single Dendritic Spines during Structural Plasticity</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tang, Shen ; Yasuda, Ryohei</creator><creatorcontrib>Tang, Shen ; Yasuda, Ryohei</creatorcontrib><description>Extracellular signal-regulated kinase (ERK) and protein kinase A (PKA) play important roles in LTP and spine structural plasticity. While fluorescence resonance energy transfer (FRET)-based sensors for these kinases had previously been developed, they did not provide sufficient sensitivity for imaging small neuronal compartments, such as single dendritic spines in brain slices. Here we improved the sensitivity of FRET-based kinase sensors for monitoring kinase activity under two-photon fluorescence lifetime imaging microscopy (2pFLIM). Using these improved sensors, we succeeded in imaging ERK and PKA activation in single dendritic spines during structural long-term potentiation (sLTP) in hippocampal CA1 pyramidal neurons, revealing that the activation of these kinases spreads widely with length constants of more than 10 μm. The strategy for improvement of sensors used here should be applicable for developing highly sensitive biosensors for various protein kinases. [Display omitted] •Highly sensitive ERK and PKA FLIM sensors with novel fluorophore pair•Image ERK and PKA activation in single dendritic spines during structural plasticity•Mobile and immobilized sensors resolve spatiotemporal pattern of kinase activity Tang and Yasuda designed highly sensitive sensors for ERK and PKA and measured the spatiotemporal dynamics of the activation of these kinases in dendrites during spine structural plasticity of single dendritic spines.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2017.02.032</identifier><identifier>PMID: 28285819</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>A kinase-anchoring protein ; Actin ; Adenosine kinase ; Amino acid sequence ; Animals ; Biosensors ; Brain slice preparation ; CA1 Region, Hippocampal - metabolism ; Calcium influx ; Calcium signalling ; Cell activation ; Cells, Cultured ; Cerebellum ; Circular dichroism ; Cyclic AMP ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Dendrites ; Dendritic Spines - enzymology ; Dendritic Spines - physiology ; Electrical stimuli ; Epidermal growth factor ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Female ; FLIM ; Fluorescence Resonance Energy Transfer - methods ; FRET ; Hippocampus ; Humans ; kinase ; Kinases ; Long-term depression ; Long-term potentiation ; Long-Term Potentiation - physiology ; LTP ; Male ; Mice ; Microscopy, Fluorescence, Multiphoton ; Mutation ; Neuronal Plasticity - physiology ; Neurons ; Phosphorylation ; Protein kinase ; Proteins ; Pyramidal Cells - metabolism ; Rodents ; Sensors ; Signal transduction ; signaling ; synaptic plasticity ; Transcription factors ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>Neuron (Cambridge, Mass.), 2017-03, Vol.93 (6), p.1315-1324.e3</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Mar 22, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-aff00c59407fb0ac94a5ead767c499d1c77842543d4876253ecfee4766e1dbd3</citedby><cites>FETCH-LOGICAL-c557t-aff00c59407fb0ac94a5ead767c499d1c77842543d4876253ecfee4766e1dbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2017.02.032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28285819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Shen</creatorcontrib><creatorcontrib>Yasuda, Ryohei</creatorcontrib><title>Imaging ERK and PKA Activation in Single Dendritic Spines during Structural Plasticity</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Extracellular signal-regulated kinase (ERK) and protein kinase A (PKA) play important roles in LTP and spine structural plasticity. While fluorescence resonance energy transfer (FRET)-based sensors for these kinases had previously been developed, they did not provide sufficient sensitivity for imaging small neuronal compartments, such as single dendritic spines in brain slices. Here we improved the sensitivity of FRET-based kinase sensors for monitoring kinase activity under two-photon fluorescence lifetime imaging microscopy (2pFLIM). Using these improved sensors, we succeeded in imaging ERK and PKA activation in single dendritic spines during structural long-term potentiation (sLTP) in hippocampal CA1 pyramidal neurons, revealing that the activation of these kinases spreads widely with length constants of more than 10 μm. The strategy for improvement of sensors used here should be applicable for developing highly sensitive biosensors for various protein kinases. [Display omitted] •Highly sensitive ERK and PKA FLIM sensors with novel fluorophore pair•Image ERK and PKA activation in single dendritic spines during structural plasticity•Mobile and immobilized sensors resolve spatiotemporal pattern of kinase activity Tang and Yasuda designed highly sensitive sensors for ERK and PKA and measured the spatiotemporal dynamics of the activation of these kinases in dendrites during spine structural plasticity of single dendritic spines.</description><subject>A kinase-anchoring protein</subject><subject>Actin</subject><subject>Adenosine kinase</subject><subject>Amino acid sequence</subject><subject>Animals</subject><subject>Biosensors</subject><subject>Brain slice preparation</subject><subject>CA1 Region, Hippocampal - metabolism</subject><subject>Calcium influx</subject><subject>Calcium signalling</subject><subject>Cell activation</subject><subject>Cells, Cultured</subject><subject>Cerebellum</subject><subject>Circular dichroism</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Dendrites</subject><subject>Dendritic Spines - enzymology</subject><subject>Dendritic Spines - physiology</subject><subject>Electrical stimuli</subject><subject>Epidermal growth factor</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Female</subject><subject>FLIM</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>FRET</subject><subject>Hippocampus</subject><subject>Humans</subject><subject>kinase</subject><subject>Kinases</subject><subject>Long-term depression</subject><subject>Long-term potentiation</subject><subject>Long-Term Potentiation - physiology</subject><subject>LTP</subject><subject>Male</subject><subject>Mice</subject><subject>Microscopy, Fluorescence, Multiphoton</subject><subject>Mutation</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Phosphorylation</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Pyramidal Cells - metabolism</subject><subject>Rodents</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>signaling</subject><subject>synaptic plasticity</subject><subject>Transcription factors</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFuEzEUtBAVDYU_QMgSFy67tb1ee31BitpSqlaiIhVXy7HfBkcbb7C9kfr3OEpbWg6c3uHNzJt5g9AHSmpKqDhd1wGmOIaaESprwmrSsFdoRomSFadKvUYz0ilRCSabY_Q2pTUhlLeKvkHHrGNd21E1Qz-vNmblwwpf_LjGJjh8ez3Hc5v9zmQ_BuwDXpT1APgcgos-e4sXWx8gYTfFPXGR42TzFM2AbweTCsDn-3foqDdDgvcP8wTdfb24O_tW3Xy_vDqb31S2bWWuTN8TYlvFieyXxFjFTQvGSSEtV8pRK2XHWcsbxzspWNuA7QG4FAKoW7rmBH05yG6n5QachZCLD72NfmPivR6N1y83wf_Sq3GnBeHlA7wIfH4QiOPvCVLWG58sDIMJME5J03K2oy1t9tBP_0DX4xRDSVdQxaVQomMFxQ8oG8eUIvRPZijR-970Wh960_veNGG69FZoH58HeSI9FvU3KZRv7jxEnayHYMH5CDZrN_r_X_gDEWqsDQ</recordid><startdate>20170322</startdate><enddate>20170322</enddate><creator>Tang, Shen</creator><creator>Yasuda, Ryohei</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170322</creationdate><title>Imaging ERK and PKA Activation in Single Dendritic Spines during Structural Plasticity</title><author>Tang, Shen ; Yasuda, Ryohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-aff00c59407fb0ac94a5ead767c499d1c77842543d4876253ecfee4766e1dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A kinase-anchoring protein</topic><topic>Actin</topic><topic>Adenosine kinase</topic><topic>Amino acid sequence</topic><topic>Animals</topic><topic>Biosensors</topic><topic>Brain slice preparation</topic><topic>CA1 Region, Hippocampal - metabolism</topic><topic>Calcium influx</topic><topic>Calcium signalling</topic><topic>Cell activation</topic><topic>Cells, Cultured</topic><topic>Cerebellum</topic><topic>Circular dichroism</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Dendrites</topic><topic>Dendritic Spines - enzymology</topic><topic>Dendritic Spines - physiology</topic><topic>Electrical stimuli</topic><topic>Epidermal growth factor</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Female</topic><topic>FLIM</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>FRET</topic><topic>Hippocampus</topic><topic>Humans</topic><topic>kinase</topic><topic>Kinases</topic><topic>Long-term depression</topic><topic>Long-term potentiation</topic><topic>Long-Term Potentiation - physiology</topic><topic>LTP</topic><topic>Male</topic><topic>Mice</topic><topic>Microscopy, Fluorescence, Multiphoton</topic><topic>Mutation</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Phosphorylation</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Pyramidal Cells - metabolism</topic><topic>Rodents</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>signaling</topic><topic>synaptic plasticity</topic><topic>Transcription factors</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Shen</creatorcontrib><creatorcontrib>Yasuda, Ryohei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Shen</au><au>Yasuda, Ryohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging ERK and PKA Activation in Single Dendritic Spines during Structural Plasticity</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2017-03-22</date><risdate>2017</risdate><volume>93</volume><issue>6</issue><spage>1315</spage><epage>1324.e3</epage><pages>1315-1324.e3</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Extracellular signal-regulated kinase (ERK) and protein kinase A (PKA) play important roles in LTP and spine structural plasticity. While fluorescence resonance energy transfer (FRET)-based sensors for these kinases had previously been developed, they did not provide sufficient sensitivity for imaging small neuronal compartments, such as single dendritic spines in brain slices. Here we improved the sensitivity of FRET-based kinase sensors for monitoring kinase activity under two-photon fluorescence lifetime imaging microscopy (2pFLIM). Using these improved sensors, we succeeded in imaging ERK and PKA activation in single dendritic spines during structural long-term potentiation (sLTP) in hippocampal CA1 pyramidal neurons, revealing that the activation of these kinases spreads widely with length constants of more than 10 μm. The strategy for improvement of sensors used here should be applicable for developing highly sensitive biosensors for various protein kinases. [Display omitted] •Highly sensitive ERK and PKA FLIM sensors with novel fluorophore pair•Image ERK and PKA activation in single dendritic spines during structural plasticity•Mobile and immobilized sensors resolve spatiotemporal pattern of kinase activity Tang and Yasuda designed highly sensitive sensors for ERK and PKA and measured the spatiotemporal dynamics of the activation of these kinases in dendrites during spine structural plasticity of single dendritic spines.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28285819</pmid><doi>10.1016/j.neuron.2017.02.032</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2017-03, Vol.93 (6), p.1315-1324.e3
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042854
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects A kinase-anchoring protein
Actin
Adenosine kinase
Amino acid sequence
Animals
Biosensors
Brain slice preparation
CA1 Region, Hippocampal - metabolism
Calcium influx
Calcium signalling
Cell activation
Cells, Cultured
Cerebellum
Circular dichroism
Cyclic AMP
Cyclic AMP-Dependent Protein Kinases - metabolism
Dendrites
Dendritic Spines - enzymology
Dendritic Spines - physiology
Electrical stimuli
Epidermal growth factor
Extracellular Signal-Regulated MAP Kinases - metabolism
Female
FLIM
Fluorescence Resonance Energy Transfer - methods
FRET
Hippocampus
Humans
kinase
Kinases
Long-term depression
Long-term potentiation
Long-Term Potentiation - physiology
LTP
Male
Mice
Microscopy, Fluorescence, Multiphoton
Mutation
Neuronal Plasticity - physiology
Neurons
Phosphorylation
Protein kinase
Proteins
Pyramidal Cells - metabolism
Rodents
Sensors
Signal transduction
signaling
synaptic plasticity
Transcription factors
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors
title Imaging ERK and PKA Activation in Single Dendritic Spines during Structural Plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20ERK%20and%20PKA%20Activation%20in%20Single%20Dendritic%20Spines%20during%20Structural%20Plasticity&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Tang,%20Shen&rft.date=2017-03-22&rft.volume=93&rft.issue=6&rft.spage=1315&rft.epage=1324.e3&rft.pages=1315-1324.e3&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2017.02.032&rft_dat=%3Cproquest_pubme%3E1884269682%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884269682&rft_id=info:pmid/28285819&rft_els_id=S089662731730140X&rfr_iscdi=true