Metapopulation stability in branching river networks
Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): La...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-06, Vol.115 (26), p.E5963-E5969 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E5969 |
---|---|
container_issue | 26 |
container_start_page | E5963 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Terui, Akira Ishiyama, Nobuo Urabe, Hirokazu Ono, Satoru Finlay, Jacques C. Nakamura, Futoshi |
description | Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): Larger ecosystems will harbor more diverse subpopulations with more stable aggregate dynamics. However, current theories developed in simplified landscapes may be inadequate to predict emergent properties of branching ecosystems, an overlooked but widespread habitat geometry. Here, we combine theory and analyses of a unique long-term dataset to show that a scale-invariant characteristic of fractal river networks, branching complexity (measured as branching probability), stabilizes watershed metapopulations. In riverine systems, each branch (i.e., tributary) exhibits distinctive ecological dynamics, and confluences serve as “merging” points of those branches. Hence, increased levels of branching complexity should confer a greater likelihood of integrating asynchronous dynamics over the landscape. We theoretically revealed that the stabilizing effect of branching complexity is a consequence of purely probabilistic processes in natural conditions, where within-branch synchrony exceeds among-branch synchrony. Contrary to current theories developed in 2D systems, metapopulation size (a variable closely related to ecosystem size) had vague effects on metapopulation stability. These theoretical predictions were supported by 18-y observations of fish populations across 31 watersheds: Our cross-watershed comparisons revealed consistent stabilizing effects of branching complexity on metapopulations of very different riverine fishes. A strong association between branching complexity and metapopulation stability is likely to be a pervasive feature of branching networks that strongly affects species persistence during rapid environmental changes. |
doi_str_mv | 10.1073/pnas.1800060115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26510846</jstor_id><sourcerecordid>26510846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-cd8311156c81e274c4ec0e194126584dee932e2a2c4366d0fa0a8be231acb1763</originalsourceid><addsrcrecordid>eNpdkb1PHDEUxC2UCA6SmipopTQ0C-_5a-0mEkL5kojSQG15fT7wsWcvtpeI_z57OgJJqlfM741mNIQcI5whdOx8jLacoQIACYhijywQNLaSa3hDFgC0axWn_IAclrKeKS0U7JMDqpUWUosF4T98tWMap8HWkGJTqu3DEOpTE2LTZxvdXYi3TQ6PPjfR118p35d35O3KDsW_f75H5ObL5-vLb-3Vz6_fLy-uWicEq61bKoZzKukUetpxx70Dj5ojlULxpfeaUU8tdZxJuYSVBat6Txla12Mn2RH5tPMdp37jl87Hmu1gxhw2Nj-ZZIP5V4nhztymRyOBU5BqNjh9NsjpYfKlmk0ozg-DjT5NxVAQXEvecTajH_9D12nKca5nKAIohRK21PmOcjmVkv3qJQyC2S5itouY10Xmj5O_O7zwfyaYgQ87YF1qyq-6FAiKS_YbzoyQ-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100881603</pqid></control><display><type>article</type><title>Metapopulation stability in branching river networks</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Terui, Akira ; Ishiyama, Nobuo ; Urabe, Hirokazu ; Ono, Satoru ; Finlay, Jacques C. ; Nakamura, Futoshi</creator><creatorcontrib>Terui, Akira ; Ishiyama, Nobuo ; Urabe, Hirokazu ; Ono, Satoru ; Finlay, Jacques C. ; Nakamura, Futoshi</creatorcontrib><description>Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): Larger ecosystems will harbor more diverse subpopulations with more stable aggregate dynamics. However, current theories developed in simplified landscapes may be inadequate to predict emergent properties of branching ecosystems, an overlooked but widespread habitat geometry. Here, we combine theory and analyses of a unique long-term dataset to show that a scale-invariant characteristic of fractal river networks, branching complexity (measured as branching probability), stabilizes watershed metapopulations. In riverine systems, each branch (i.e., tributary) exhibits distinctive ecological dynamics, and confluences serve as “merging” points of those branches. Hence, increased levels of branching complexity should confer a greater likelihood of integrating asynchronous dynamics over the landscape. We theoretically revealed that the stabilizing effect of branching complexity is a consequence of purely probabilistic processes in natural conditions, where within-branch synchrony exceeds among-branch synchrony. Contrary to current theories developed in 2D systems, metapopulation size (a variable closely related to ecosystem size) had vague effects on metapopulation stability. These theoretical predictions were supported by 18-y observations of fish populations across 31 watersheds: Our cross-watershed comparisons revealed consistent stabilizing effects of branching complexity on metapopulations of very different riverine fishes. A strong association between branching complexity and metapopulation stability is likely to be a pervasive feature of branching networks that strongly affects species persistence during rapid environmental changes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1800060115</identifier><identifier>PMID: 29895695</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Complexity ; Dynamic stability ; Dynamics ; Ecosystem ; Ecosystem assessment ; Ecosystems ; Environmental changes ; Fish ; Fish populations ; Fishes - physiology ; Habitats ; Landscape ; Metapopulations ; Models, Biological ; Networks ; PNAS Plus ; Population density ; Population dynamics ; River networks ; Rivers ; Statistical analysis ; Subpopulations ; Watersheds</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-06, Vol.115 (26), p.E5963-E5969</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jun 26, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-cd8311156c81e274c4ec0e194126584dee932e2a2c4366d0fa0a8be231acb1763</citedby><cites>FETCH-LOGICAL-c553t-cd8311156c81e274c4ec0e194126584dee932e2a2c4366d0fa0a8be231acb1763</cites><orcidid>0000-0002-7968-7030 ; 0000-0003-3774-2844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26510846$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26510846$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29895695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Terui, Akira</creatorcontrib><creatorcontrib>Ishiyama, Nobuo</creatorcontrib><creatorcontrib>Urabe, Hirokazu</creatorcontrib><creatorcontrib>Ono, Satoru</creatorcontrib><creatorcontrib>Finlay, Jacques C.</creatorcontrib><creatorcontrib>Nakamura, Futoshi</creatorcontrib><title>Metapopulation stability in branching river networks</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): Larger ecosystems will harbor more diverse subpopulations with more stable aggregate dynamics. However, current theories developed in simplified landscapes may be inadequate to predict emergent properties of branching ecosystems, an overlooked but widespread habitat geometry. Here, we combine theory and analyses of a unique long-term dataset to show that a scale-invariant characteristic of fractal river networks, branching complexity (measured as branching probability), stabilizes watershed metapopulations. In riverine systems, each branch (i.e., tributary) exhibits distinctive ecological dynamics, and confluences serve as “merging” points of those branches. Hence, increased levels of branching complexity should confer a greater likelihood of integrating asynchronous dynamics over the landscape. We theoretically revealed that the stabilizing effect of branching complexity is a consequence of purely probabilistic processes in natural conditions, where within-branch synchrony exceeds among-branch synchrony. Contrary to current theories developed in 2D systems, metapopulation size (a variable closely related to ecosystem size) had vague effects on metapopulation stability. These theoretical predictions were supported by 18-y observations of fish populations across 31 watersheds: Our cross-watershed comparisons revealed consistent stabilizing effects of branching complexity on metapopulations of very different riverine fishes. A strong association between branching complexity and metapopulation stability is likely to be a pervasive feature of branching networks that strongly affects species persistence during rapid environmental changes.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Complexity</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Ecosystem</subject><subject>Ecosystem assessment</subject><subject>Ecosystems</subject><subject>Environmental changes</subject><subject>Fish</subject><subject>Fish populations</subject><subject>Fishes - physiology</subject><subject>Habitats</subject><subject>Landscape</subject><subject>Metapopulations</subject><subject>Models, Biological</subject><subject>Networks</subject><subject>PNAS Plus</subject><subject>Population density</subject><subject>Population dynamics</subject><subject>River networks</subject><subject>Rivers</subject><subject>Statistical analysis</subject><subject>Subpopulations</subject><subject>Watersheds</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkb1PHDEUxC2UCA6SmipopTQ0C-_5a-0mEkL5kojSQG15fT7wsWcvtpeI_z57OgJJqlfM741mNIQcI5whdOx8jLacoQIACYhijywQNLaSa3hDFgC0axWn_IAclrKeKS0U7JMDqpUWUosF4T98tWMap8HWkGJTqu3DEOpTE2LTZxvdXYi3TQ6PPjfR118p35d35O3KDsW_f75H5ObL5-vLb-3Vz6_fLy-uWicEq61bKoZzKukUetpxx70Dj5ojlULxpfeaUU8tdZxJuYSVBat6Txla12Mn2RH5tPMdp37jl87Hmu1gxhw2Nj-ZZIP5V4nhztymRyOBU5BqNjh9NsjpYfKlmk0ozg-DjT5NxVAQXEvecTajH_9D12nKca5nKAIohRK21PmOcjmVkv3qJQyC2S5itouY10Xmj5O_O7zwfyaYgQ87YF1qyq-6FAiKS_YbzoyQ-Q</recordid><startdate>20180626</startdate><enddate>20180626</enddate><creator>Terui, Akira</creator><creator>Ishiyama, Nobuo</creator><creator>Urabe, Hirokazu</creator><creator>Ono, Satoru</creator><creator>Finlay, Jacques C.</creator><creator>Nakamura, Futoshi</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7968-7030</orcidid><orcidid>https://orcid.org/0000-0003-3774-2844</orcidid></search><sort><creationdate>20180626</creationdate><title>Metapopulation stability in branching river networks</title><author>Terui, Akira ; Ishiyama, Nobuo ; Urabe, Hirokazu ; Ono, Satoru ; Finlay, Jacques C. ; Nakamura, Futoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-cd8311156c81e274c4ec0e194126584dee932e2a2c4366d0fa0a8be231acb1763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Complexity</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Ecosystem</topic><topic>Ecosystem assessment</topic><topic>Ecosystems</topic><topic>Environmental changes</topic><topic>Fish</topic><topic>Fish populations</topic><topic>Fishes - physiology</topic><topic>Habitats</topic><topic>Landscape</topic><topic>Metapopulations</topic><topic>Models, Biological</topic><topic>Networks</topic><topic>PNAS Plus</topic><topic>Population density</topic><topic>Population dynamics</topic><topic>River networks</topic><topic>Rivers</topic><topic>Statistical analysis</topic><topic>Subpopulations</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terui, Akira</creatorcontrib><creatorcontrib>Ishiyama, Nobuo</creatorcontrib><creatorcontrib>Urabe, Hirokazu</creatorcontrib><creatorcontrib>Ono, Satoru</creatorcontrib><creatorcontrib>Finlay, Jacques C.</creatorcontrib><creatorcontrib>Nakamura, Futoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terui, Akira</au><au>Ishiyama, Nobuo</au><au>Urabe, Hirokazu</au><au>Ono, Satoru</au><au>Finlay, Jacques C.</au><au>Nakamura, Futoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metapopulation stability in branching river networks</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-06-26</date><risdate>2018</risdate><volume>115</volume><issue>26</issue><spage>E5963</spage><epage>E5969</epage><pages>E5963-E5969</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): Larger ecosystems will harbor more diverse subpopulations with more stable aggregate dynamics. However, current theories developed in simplified landscapes may be inadequate to predict emergent properties of branching ecosystems, an overlooked but widespread habitat geometry. Here, we combine theory and analyses of a unique long-term dataset to show that a scale-invariant characteristic of fractal river networks, branching complexity (measured as branching probability), stabilizes watershed metapopulations. In riverine systems, each branch (i.e., tributary) exhibits distinctive ecological dynamics, and confluences serve as “merging” points of those branches. Hence, increased levels of branching complexity should confer a greater likelihood of integrating asynchronous dynamics over the landscape. We theoretically revealed that the stabilizing effect of branching complexity is a consequence of purely probabilistic processes in natural conditions, where within-branch synchrony exceeds among-branch synchrony. Contrary to current theories developed in 2D systems, metapopulation size (a variable closely related to ecosystem size) had vague effects on metapopulation stability. These theoretical predictions were supported by 18-y observations of fish populations across 31 watersheds: Our cross-watershed comparisons revealed consistent stabilizing effects of branching complexity on metapopulations of very different riverine fishes. A strong association between branching complexity and metapopulation stability is likely to be a pervasive feature of branching networks that strongly affects species persistence during rapid environmental changes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29895695</pmid><doi>10.1073/pnas.1800060115</doi><orcidid>https://orcid.org/0000-0002-7968-7030</orcidid><orcidid>https://orcid.org/0000-0003-3774-2844</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-06, Vol.115 (26), p.E5963-E5969 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042068 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Complexity Dynamic stability Dynamics Ecosystem Ecosystem assessment Ecosystems Environmental changes Fish Fish populations Fishes - physiology Habitats Landscape Metapopulations Models, Biological Networks PNAS Plus Population density Population dynamics River networks Rivers Statistical analysis Subpopulations Watersheds |
title | Metapopulation stability in branching river networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metapopulation%20stability%20in%20branching%20river%20networks&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Terui,%20Akira&rft.date=2018-06-26&rft.volume=115&rft.issue=26&rft.spage=E5963&rft.epage=E5969&rft.pages=E5963-E5969&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1800060115&rft_dat=%3Cjstor_pubme%3E26510846%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100881603&rft_id=info:pmid/29895695&rft_jstor_id=26510846&rfr_iscdi=true |