Metapopulation stability in branching river networks

Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): La...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-06, Vol.115 (26), p.E5963-E5969
Hauptverfasser: Terui, Akira, Ishiyama, Nobuo, Urabe, Hirokazu, Ono, Satoru, Finlay, Jacques C., Nakamura, Futoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E5969
container_issue 26
container_start_page E5963
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Terui, Akira
Ishiyama, Nobuo
Urabe, Hirokazu
Ono, Satoru
Finlay, Jacques C.
Nakamura, Futoshi
description Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): Larger ecosystems will harbor more diverse subpopulations with more stable aggregate dynamics. However, current theories developed in simplified landscapes may be inadequate to predict emergent properties of branching ecosystems, an overlooked but widespread habitat geometry. Here, we combine theory and analyses of a unique long-term dataset to show that a scale-invariant characteristic of fractal river networks, branching complexity (measured as branching probability), stabilizes watershed metapopulations. In riverine systems, each branch (i.e., tributary) exhibits distinctive ecological dynamics, and confluences serve as “merging” points of those branches. Hence, increased levels of branching complexity should confer a greater likelihood of integrating asynchronous dynamics over the landscape. We theoretically revealed that the stabilizing effect of branching complexity is a consequence of purely probabilistic processes in natural conditions, where within-branch synchrony exceeds among-branch synchrony. Contrary to current theories developed in 2D systems, metapopulation size (a variable closely related to ecosystem size) had vague effects on metapopulation stability. These theoretical predictions were supported by 18-y observations of fish populations across 31 watersheds: Our cross-watershed comparisons revealed consistent stabilizing effects of branching complexity on metapopulations of very different riverine fishes. A strong association between branching complexity and metapopulation stability is likely to be a pervasive feature of branching networks that strongly affects species persistence during rapid environmental changes.
doi_str_mv 10.1073/pnas.1800060115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26510846</jstor_id><sourcerecordid>26510846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-cd8311156c81e274c4ec0e194126584dee932e2a2c4366d0fa0a8be231acb1763</originalsourceid><addsrcrecordid>eNpdkb1PHDEUxC2UCA6SmipopTQ0C-_5a-0mEkL5kojSQG15fT7wsWcvtpeI_z57OgJJqlfM741mNIQcI5whdOx8jLacoQIACYhijywQNLaSa3hDFgC0axWn_IAclrKeKS0U7JMDqpUWUosF4T98tWMap8HWkGJTqu3DEOpTE2LTZxvdXYi3TQ6PPjfR118p35d35O3KDsW_f75H5ObL5-vLb-3Vz6_fLy-uWicEq61bKoZzKukUetpxx70Dj5ojlULxpfeaUU8tdZxJuYSVBat6Txla12Mn2RH5tPMdp37jl87Hmu1gxhw2Nj-ZZIP5V4nhztymRyOBU5BqNjh9NsjpYfKlmk0ozg-DjT5NxVAQXEvecTajH_9D12nKca5nKAIohRK21PmOcjmVkv3qJQyC2S5itouY10Xmj5O_O7zwfyaYgQ87YF1qyq-6FAiKS_YbzoyQ-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100881603</pqid></control><display><type>article</type><title>Metapopulation stability in branching river networks</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Terui, Akira ; Ishiyama, Nobuo ; Urabe, Hirokazu ; Ono, Satoru ; Finlay, Jacques C. ; Nakamura, Futoshi</creator><creatorcontrib>Terui, Akira ; Ishiyama, Nobuo ; Urabe, Hirokazu ; Ono, Satoru ; Finlay, Jacques C. ; Nakamura, Futoshi</creatorcontrib><description>Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): Larger ecosystems will harbor more diverse subpopulations with more stable aggregate dynamics. However, current theories developed in simplified landscapes may be inadequate to predict emergent properties of branching ecosystems, an overlooked but widespread habitat geometry. Here, we combine theory and analyses of a unique long-term dataset to show that a scale-invariant characteristic of fractal river networks, branching complexity (measured as branching probability), stabilizes watershed metapopulations. In riverine systems, each branch (i.e., tributary) exhibits distinctive ecological dynamics, and confluences serve as “merging” points of those branches. Hence, increased levels of branching complexity should confer a greater likelihood of integrating asynchronous dynamics over the landscape. We theoretically revealed that the stabilizing effect of branching complexity is a consequence of purely probabilistic processes in natural conditions, where within-branch synchrony exceeds among-branch synchrony. Contrary to current theories developed in 2D systems, metapopulation size (a variable closely related to ecosystem size) had vague effects on metapopulation stability. These theoretical predictions were supported by 18-y observations of fish populations across 31 watersheds: Our cross-watershed comparisons revealed consistent stabilizing effects of branching complexity on metapopulations of very different riverine fishes. A strong association between branching complexity and metapopulation stability is likely to be a pervasive feature of branching networks that strongly affects species persistence during rapid environmental changes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1800060115</identifier><identifier>PMID: 29895695</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Complexity ; Dynamic stability ; Dynamics ; Ecosystem ; Ecosystem assessment ; Ecosystems ; Environmental changes ; Fish ; Fish populations ; Fishes - physiology ; Habitats ; Landscape ; Metapopulations ; Models, Biological ; Networks ; PNAS Plus ; Population density ; Population dynamics ; River networks ; Rivers ; Statistical analysis ; Subpopulations ; Watersheds</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-06, Vol.115 (26), p.E5963-E5969</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jun 26, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-cd8311156c81e274c4ec0e194126584dee932e2a2c4366d0fa0a8be231acb1763</citedby><cites>FETCH-LOGICAL-c553t-cd8311156c81e274c4ec0e194126584dee932e2a2c4366d0fa0a8be231acb1763</cites><orcidid>0000-0002-7968-7030 ; 0000-0003-3774-2844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26510846$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26510846$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29895695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Terui, Akira</creatorcontrib><creatorcontrib>Ishiyama, Nobuo</creatorcontrib><creatorcontrib>Urabe, Hirokazu</creatorcontrib><creatorcontrib>Ono, Satoru</creatorcontrib><creatorcontrib>Finlay, Jacques C.</creatorcontrib><creatorcontrib>Nakamura, Futoshi</creatorcontrib><title>Metapopulation stability in branching river networks</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): Larger ecosystems will harbor more diverse subpopulations with more stable aggregate dynamics. However, current theories developed in simplified landscapes may be inadequate to predict emergent properties of branching ecosystems, an overlooked but widespread habitat geometry. Here, we combine theory and analyses of a unique long-term dataset to show that a scale-invariant characteristic of fractal river networks, branching complexity (measured as branching probability), stabilizes watershed metapopulations. In riverine systems, each branch (i.e., tributary) exhibits distinctive ecological dynamics, and confluences serve as “merging” points of those branches. Hence, increased levels of branching complexity should confer a greater likelihood of integrating asynchronous dynamics over the landscape. We theoretically revealed that the stabilizing effect of branching complexity is a consequence of purely probabilistic processes in natural conditions, where within-branch synchrony exceeds among-branch synchrony. Contrary to current theories developed in 2D systems, metapopulation size (a variable closely related to ecosystem size) had vague effects on metapopulation stability. These theoretical predictions were supported by 18-y observations of fish populations across 31 watersheds: Our cross-watershed comparisons revealed consistent stabilizing effects of branching complexity on metapopulations of very different riverine fishes. A strong association between branching complexity and metapopulation stability is likely to be a pervasive feature of branching networks that strongly affects species persistence during rapid environmental changes.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Complexity</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Ecosystem</subject><subject>Ecosystem assessment</subject><subject>Ecosystems</subject><subject>Environmental changes</subject><subject>Fish</subject><subject>Fish populations</subject><subject>Fishes - physiology</subject><subject>Habitats</subject><subject>Landscape</subject><subject>Metapopulations</subject><subject>Models, Biological</subject><subject>Networks</subject><subject>PNAS Plus</subject><subject>Population density</subject><subject>Population dynamics</subject><subject>River networks</subject><subject>Rivers</subject><subject>Statistical analysis</subject><subject>Subpopulations</subject><subject>Watersheds</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkb1PHDEUxC2UCA6SmipopTQ0C-_5a-0mEkL5kojSQG15fT7wsWcvtpeI_z57OgJJqlfM741mNIQcI5whdOx8jLacoQIACYhijywQNLaSa3hDFgC0axWn_IAclrKeKS0U7JMDqpUWUosF4T98tWMap8HWkGJTqu3DEOpTE2LTZxvdXYi3TQ6PPjfR118p35d35O3KDsW_f75H5ObL5-vLb-3Vz6_fLy-uWicEq61bKoZzKukUetpxx70Dj5ojlULxpfeaUU8tdZxJuYSVBat6Txla12Mn2RH5tPMdp37jl87Hmu1gxhw2Nj-ZZIP5V4nhztymRyOBU5BqNjh9NsjpYfKlmk0ozg-DjT5NxVAQXEvecTajH_9D12nKca5nKAIohRK21PmOcjmVkv3qJQyC2S5itouY10Xmj5O_O7zwfyaYgQ87YF1qyq-6FAiKS_YbzoyQ-Q</recordid><startdate>20180626</startdate><enddate>20180626</enddate><creator>Terui, Akira</creator><creator>Ishiyama, Nobuo</creator><creator>Urabe, Hirokazu</creator><creator>Ono, Satoru</creator><creator>Finlay, Jacques C.</creator><creator>Nakamura, Futoshi</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7968-7030</orcidid><orcidid>https://orcid.org/0000-0003-3774-2844</orcidid></search><sort><creationdate>20180626</creationdate><title>Metapopulation stability in branching river networks</title><author>Terui, Akira ; Ishiyama, Nobuo ; Urabe, Hirokazu ; Ono, Satoru ; Finlay, Jacques C. ; Nakamura, Futoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-cd8311156c81e274c4ec0e194126584dee932e2a2c4366d0fa0a8be231acb1763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Complexity</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Ecosystem</topic><topic>Ecosystem assessment</topic><topic>Ecosystems</topic><topic>Environmental changes</topic><topic>Fish</topic><topic>Fish populations</topic><topic>Fishes - physiology</topic><topic>Habitats</topic><topic>Landscape</topic><topic>Metapopulations</topic><topic>Models, Biological</topic><topic>Networks</topic><topic>PNAS Plus</topic><topic>Population density</topic><topic>Population dynamics</topic><topic>River networks</topic><topic>Rivers</topic><topic>Statistical analysis</topic><topic>Subpopulations</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terui, Akira</creatorcontrib><creatorcontrib>Ishiyama, Nobuo</creatorcontrib><creatorcontrib>Urabe, Hirokazu</creatorcontrib><creatorcontrib>Ono, Satoru</creatorcontrib><creatorcontrib>Finlay, Jacques C.</creatorcontrib><creatorcontrib>Nakamura, Futoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terui, Akira</au><au>Ishiyama, Nobuo</au><au>Urabe, Hirokazu</au><au>Ono, Satoru</au><au>Finlay, Jacques C.</au><au>Nakamura, Futoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metapopulation stability in branching river networks</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-06-26</date><risdate>2018</risdate><volume>115</volume><issue>26</issue><spage>E5963</spage><epage>E5969</epage><pages>E5963-E5969</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Intraspecific population diversity (specifically, spatial asynchrony of population dynamics) is an essential component of metapopulation stability and persistence in nature. In 2D systems, theory predicts that metapopulation stability should increase with ecosystem size (or habitat network size): Larger ecosystems will harbor more diverse subpopulations with more stable aggregate dynamics. However, current theories developed in simplified landscapes may be inadequate to predict emergent properties of branching ecosystems, an overlooked but widespread habitat geometry. Here, we combine theory and analyses of a unique long-term dataset to show that a scale-invariant characteristic of fractal river networks, branching complexity (measured as branching probability), stabilizes watershed metapopulations. In riverine systems, each branch (i.e., tributary) exhibits distinctive ecological dynamics, and confluences serve as “merging” points of those branches. Hence, increased levels of branching complexity should confer a greater likelihood of integrating asynchronous dynamics over the landscape. We theoretically revealed that the stabilizing effect of branching complexity is a consequence of purely probabilistic processes in natural conditions, where within-branch synchrony exceeds among-branch synchrony. Contrary to current theories developed in 2D systems, metapopulation size (a variable closely related to ecosystem size) had vague effects on metapopulation stability. These theoretical predictions were supported by 18-y observations of fish populations across 31 watersheds: Our cross-watershed comparisons revealed consistent stabilizing effects of branching complexity on metapopulations of very different riverine fishes. A strong association between branching complexity and metapopulation stability is likely to be a pervasive feature of branching networks that strongly affects species persistence during rapid environmental changes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29895695</pmid><doi>10.1073/pnas.1800060115</doi><orcidid>https://orcid.org/0000-0002-7968-7030</orcidid><orcidid>https://orcid.org/0000-0003-3774-2844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-06, Vol.115 (26), p.E5963-E5969
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042068
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Complexity
Dynamic stability
Dynamics
Ecosystem
Ecosystem assessment
Ecosystems
Environmental changes
Fish
Fish populations
Fishes - physiology
Habitats
Landscape
Metapopulations
Models, Biological
Networks
PNAS Plus
Population density
Population dynamics
River networks
Rivers
Statistical analysis
Subpopulations
Watersheds
title Metapopulation stability in branching river networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A14%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metapopulation%20stability%20in%20branching%20river%20networks&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Terui,%20Akira&rft.date=2018-06-26&rft.volume=115&rft.issue=26&rft.spage=E5963&rft.epage=E5969&rft.pages=E5963-E5969&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1800060115&rft_dat=%3Cjstor_pubme%3E26510846%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100881603&rft_id=info:pmid/29895695&rft_jstor_id=26510846&rfr_iscdi=true