Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction
It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The halfwave potential of SA-Fe/NG i...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-06, Vol.115 (26), p.6626-6631 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6631 |
---|---|
container_issue | 26 |
container_start_page | 6626 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Yang, Liu Cheng, Daojian Xu, Haoxiang Zeng, Xiaofei Wan, Xin Shui, Jianglan Xiang, Zhonghua Cao, Dapeng |
description | It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The halfwave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm−2. Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity. |
doi_str_mv | 10.1073/pnas.1800771115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26510788</jstor_id><sourcerecordid>26510788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-bf0477c6b05c6cb75d26caaef24b0bde1a40ceef7bb36eeae677f9f4831aa2533</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EokvhzAlkiQuXtGPHsZ0LEqpaQKrUS3vFcryTrFdZe7GdFfvvyXZLSznNk943TzN6hLxncMZA1efbYPMZ0wBKMcaaF2TBoGWVFC28JAsAriotuDghb3JeA0DbaHhNTnirWya1XJCfd2GHfvRhoGWFdOWHVWVd8Ttf9jQmP_hAY0_zDIxY2RI31KcYqLPFjvtcMu1jovH3fsBAEy6neTcelL0Xb8mr3o4Z3z3MU3J3dXl78b26vvn24-LrdeUaaEvV9SCUcrKDxknXqWbJpbMWey466JbIrACH2KuuqyWiRalU3_ZC18xa3tT1KflyzN1O3QaXDkNJdjTb5Dc27U203jx3gl-ZIe6MBMFBqjng80NAir8mzMVsfHY4jjZgnLLh0IhWSKH4jH76D13HKYX5PcMZgNZcMJip8yPlUsw5Yf94DANz6M4cujNP3c0bH__94ZH_W9YMfDgC61xievJlM-dpXf8B9cmiVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100882410</pqid></control><display><type>article</type><title>Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Liu ; Cheng, Daojian ; Xu, Haoxiang ; Zeng, Xiaofei ; Wan, Xin ; Shui, Jianglan ; Xiang, Zhonghua ; Cao, Dapeng</creator><creatorcontrib>Yang, Liu ; Cheng, Daojian ; Xu, Haoxiang ; Zeng, Xiaofei ; Wan, Xin ; Shui, Jianglan ; Xiang, Zhonghua ; Cao, Dapeng</creatorcontrib><description>It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The halfwave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm−2. Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1800771115</identifier><identifier>PMID: 29891686</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Atoms & subatomic particles ; Carbon ; Catalysis ; Catalysts ; Chemical reduction ; Chemical synthesis ; Density functional theory ; Fuel technology ; Iron ; Oxygen ; Oxygen reduction reactions ; Physical Sciences ; Platinum ; Proton exchange membrane fuel cells</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-06, Vol.115 (26), p.6626-6631</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jun 26, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-bf0477c6b05c6cb75d26caaef24b0bde1a40ceef7bb36eeae677f9f4831aa2533</citedby><cites>FETCH-LOGICAL-c509t-bf0477c6b05c6cb75d26caaef24b0bde1a40ceef7bb36eeae677f9f4831aa2533</cites><orcidid>0000-0002-6981-7794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26510788$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26510788$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29891686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Cheng, Daojian</creatorcontrib><creatorcontrib>Xu, Haoxiang</creatorcontrib><creatorcontrib>Zeng, Xiaofei</creatorcontrib><creatorcontrib>Wan, Xin</creatorcontrib><creatorcontrib>Shui, Jianglan</creatorcontrib><creatorcontrib>Xiang, Zhonghua</creatorcontrib><creatorcontrib>Cao, Dapeng</creatorcontrib><title>Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The halfwave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm−2. Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.</description><subject>Atoms & subatomic particles</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Density functional theory</subject><subject>Fuel technology</subject><subject>Iron</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><subject>Physical Sciences</subject><subject>Platinum</subject><subject>Proton exchange membrane fuel cells</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAQhS0EokvhzAlkiQuXtGPHsZ0LEqpaQKrUS3vFcryTrFdZe7GdFfvvyXZLSznNk943TzN6hLxncMZA1efbYPMZ0wBKMcaaF2TBoGWVFC28JAsAriotuDghb3JeA0DbaHhNTnirWya1XJCfd2GHfvRhoGWFdOWHVWVd8Ttf9jQmP_hAY0_zDIxY2RI31KcYqLPFjvtcMu1jovH3fsBAEy6neTcelL0Xb8mr3o4Z3z3MU3J3dXl78b26vvn24-LrdeUaaEvV9SCUcrKDxknXqWbJpbMWey466JbIrACH2KuuqyWiRalU3_ZC18xa3tT1KflyzN1O3QaXDkNJdjTb5Dc27U203jx3gl-ZIe6MBMFBqjng80NAir8mzMVsfHY4jjZgnLLh0IhWSKH4jH76D13HKYX5PcMZgNZcMJip8yPlUsw5Yf94DANz6M4cujNP3c0bH__94ZH_W9YMfDgC61xievJlM-dpXf8B9cmiVQ</recordid><startdate>20180626</startdate><enddate>20180626</enddate><creator>Yang, Liu</creator><creator>Cheng, Daojian</creator><creator>Xu, Haoxiang</creator><creator>Zeng, Xiaofei</creator><creator>Wan, Xin</creator><creator>Shui, Jianglan</creator><creator>Xiang, Zhonghua</creator><creator>Cao, Dapeng</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6981-7794</orcidid></search><sort><creationdate>20180626</creationdate><title>Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction</title><author>Yang, Liu ; Cheng, Daojian ; Xu, Haoxiang ; Zeng, Xiaofei ; Wan, Xin ; Shui, Jianglan ; Xiang, Zhonghua ; Cao, Dapeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-bf0477c6b05c6cb75d26caaef24b0bde1a40ceef7bb36eeae677f9f4831aa2533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atoms & subatomic particles</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Density functional theory</topic><topic>Fuel technology</topic><topic>Iron</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><topic>Physical Sciences</topic><topic>Platinum</topic><topic>Proton exchange membrane fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Cheng, Daojian</creatorcontrib><creatorcontrib>Xu, Haoxiang</creatorcontrib><creatorcontrib>Zeng, Xiaofei</creatorcontrib><creatorcontrib>Wan, Xin</creatorcontrib><creatorcontrib>Shui, Jianglan</creatorcontrib><creatorcontrib>Xiang, Zhonghua</creatorcontrib><creatorcontrib>Cao, Dapeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Liu</au><au>Cheng, Daojian</au><au>Xu, Haoxiang</au><au>Zeng, Xiaofei</au><au>Wan, Xin</au><au>Shui, Jianglan</au><au>Xiang, Zhonghua</au><au>Cao, Dapeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-06-26</date><risdate>2018</risdate><volume>115</volume><issue>26</issue><spage>6626</spage><epage>6631</epage><pages>6626-6631</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The halfwave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm−2. Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29891686</pmid><doi>10.1073/pnas.1800771115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6981-7794</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-06, Vol.115 (26), p.6626-6631 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042067 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Atoms & subatomic particles Carbon Catalysis Catalysts Chemical reduction Chemical synthesis Density functional theory Fuel technology Iron Oxygen Oxygen reduction reactions Physical Sciences Platinum Proton exchange membrane fuel cells |
title | Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20high-activity%20origin%20of%20single-atom%20iron%20catalysts%20for%20oxygen%20reduction%20reaction&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Liu&rft.date=2018-06-26&rft.volume=115&rft.issue=26&rft.spage=6626&rft.epage=6631&rft.pages=6626-6631&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1800771115&rft_dat=%3Cjstor_pubme%3E26510788%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100882410&rft_id=info:pmid/29891686&rft_jstor_id=26510788&rfr_iscdi=true |