Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction

It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The halfwave potential of SA-Fe/NG i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-06, Vol.115 (26), p.6626-6631
Hauptverfasser: Yang, Liu, Cheng, Daojian, Xu, Haoxiang, Zeng, Xiaofei, Wan, Xin, Shui, Jianglan, Xiang, Zhonghua, Cao, Dapeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6631
container_issue 26
container_start_page 6626
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Yang, Liu
Cheng, Daojian
Xu, Haoxiang
Zeng, Xiaofei
Wan, Xin
Shui, Jianglan
Xiang, Zhonghua
Cao, Dapeng
description It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The halfwave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm−2. Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.
doi_str_mv 10.1073/pnas.1800771115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26510788</jstor_id><sourcerecordid>26510788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-bf0477c6b05c6cb75d26caaef24b0bde1a40ceef7bb36eeae677f9f4831aa2533</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EokvhzAlkiQuXtGPHsZ0LEqpaQKrUS3vFcryTrFdZe7GdFfvvyXZLSznNk943TzN6hLxncMZA1efbYPMZ0wBKMcaaF2TBoGWVFC28JAsAriotuDghb3JeA0DbaHhNTnirWya1XJCfd2GHfvRhoGWFdOWHVWVd8Ttf9jQmP_hAY0_zDIxY2RI31KcYqLPFjvtcMu1jovH3fsBAEy6neTcelL0Xb8mr3o4Z3z3MU3J3dXl78b26vvn24-LrdeUaaEvV9SCUcrKDxknXqWbJpbMWey466JbIrACH2KuuqyWiRalU3_ZC18xa3tT1KflyzN1O3QaXDkNJdjTb5Dc27U203jx3gl-ZIe6MBMFBqjng80NAir8mzMVsfHY4jjZgnLLh0IhWSKH4jH76D13HKYX5PcMZgNZcMJip8yPlUsw5Yf94DANz6M4cujNP3c0bH__94ZH_W9YMfDgC61xievJlM-dpXf8B9cmiVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100882410</pqid></control><display><type>article</type><title>Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Liu ; Cheng, Daojian ; Xu, Haoxiang ; Zeng, Xiaofei ; Wan, Xin ; Shui, Jianglan ; Xiang, Zhonghua ; Cao, Dapeng</creator><creatorcontrib>Yang, Liu ; Cheng, Daojian ; Xu, Haoxiang ; Zeng, Xiaofei ; Wan, Xin ; Shui, Jianglan ; Xiang, Zhonghua ; Cao, Dapeng</creatorcontrib><description>It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The halfwave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm−2. Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1800771115</identifier><identifier>PMID: 29891686</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Atoms &amp; subatomic particles ; Carbon ; Catalysis ; Catalysts ; Chemical reduction ; Chemical synthesis ; Density functional theory ; Fuel technology ; Iron ; Oxygen ; Oxygen reduction reactions ; Physical Sciences ; Platinum ; Proton exchange membrane fuel cells</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-06, Vol.115 (26), p.6626-6631</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jun 26, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-bf0477c6b05c6cb75d26caaef24b0bde1a40ceef7bb36eeae677f9f4831aa2533</citedby><cites>FETCH-LOGICAL-c509t-bf0477c6b05c6cb75d26caaef24b0bde1a40ceef7bb36eeae677f9f4831aa2533</cites><orcidid>0000-0002-6981-7794</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26510788$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26510788$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29891686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Cheng, Daojian</creatorcontrib><creatorcontrib>Xu, Haoxiang</creatorcontrib><creatorcontrib>Zeng, Xiaofei</creatorcontrib><creatorcontrib>Wan, Xin</creatorcontrib><creatorcontrib>Shui, Jianglan</creatorcontrib><creatorcontrib>Xiang, Zhonghua</creatorcontrib><creatorcontrib>Cao, Dapeng</creatorcontrib><title>Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The halfwave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm−2. Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.</description><subject>Atoms &amp; subatomic particles</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Density functional theory</subject><subject>Fuel technology</subject><subject>Iron</subject><subject>Oxygen</subject><subject>Oxygen reduction reactions</subject><subject>Physical Sciences</subject><subject>Platinum</subject><subject>Proton exchange membrane fuel cells</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAQhS0EokvhzAlkiQuXtGPHsZ0LEqpaQKrUS3vFcryTrFdZe7GdFfvvyXZLSznNk943TzN6hLxncMZA1efbYPMZ0wBKMcaaF2TBoGWVFC28JAsAriotuDghb3JeA0DbaHhNTnirWya1XJCfd2GHfvRhoGWFdOWHVWVd8Ttf9jQmP_hAY0_zDIxY2RI31KcYqLPFjvtcMu1jovH3fsBAEy6neTcelL0Xb8mr3o4Z3z3MU3J3dXl78b26vvn24-LrdeUaaEvV9SCUcrKDxknXqWbJpbMWey466JbIrACH2KuuqyWiRalU3_ZC18xa3tT1KflyzN1O3QaXDkNJdjTb5Dc27U203jx3gl-ZIe6MBMFBqjng80NAir8mzMVsfHY4jjZgnLLh0IhWSKH4jH76D13HKYX5PcMZgNZcMJip8yPlUsw5Yf94DANz6M4cujNP3c0bH__94ZH_W9YMfDgC61xievJlM-dpXf8B9cmiVQ</recordid><startdate>20180626</startdate><enddate>20180626</enddate><creator>Yang, Liu</creator><creator>Cheng, Daojian</creator><creator>Xu, Haoxiang</creator><creator>Zeng, Xiaofei</creator><creator>Wan, Xin</creator><creator>Shui, Jianglan</creator><creator>Xiang, Zhonghua</creator><creator>Cao, Dapeng</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6981-7794</orcidid></search><sort><creationdate>20180626</creationdate><title>Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction</title><author>Yang, Liu ; Cheng, Daojian ; Xu, Haoxiang ; Zeng, Xiaofei ; Wan, Xin ; Shui, Jianglan ; Xiang, Zhonghua ; Cao, Dapeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-bf0477c6b05c6cb75d26caaef24b0bde1a40ceef7bb36eeae677f9f4831aa2533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Density functional theory</topic><topic>Fuel technology</topic><topic>Iron</topic><topic>Oxygen</topic><topic>Oxygen reduction reactions</topic><topic>Physical Sciences</topic><topic>Platinum</topic><topic>Proton exchange membrane fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Cheng, Daojian</creatorcontrib><creatorcontrib>Xu, Haoxiang</creatorcontrib><creatorcontrib>Zeng, Xiaofei</creatorcontrib><creatorcontrib>Wan, Xin</creatorcontrib><creatorcontrib>Shui, Jianglan</creatorcontrib><creatorcontrib>Xiang, Zhonghua</creatorcontrib><creatorcontrib>Cao, Dapeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Liu</au><au>Cheng, Daojian</au><au>Xu, Haoxiang</au><au>Zeng, Xiaofei</au><au>Wan, Xin</au><au>Shui, Jianglan</au><au>Xiang, Zhonghua</au><au>Cao, Dapeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-06-26</date><risdate>2018</risdate><volume>115</volume><issue>26</issue><spage>6626</spage><epage>6631</epage><pages>6626-6631</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>It is still a grand challenge to develop a highly efficient nonprecious-metal electrocatalyst to replace the Pt-based catalysts for oxygen reduction reaction (ORR). Here, we propose a surfactant-assisted method to synthesize single-atom iron catalysts (SA-Fe/NG). The halfwave potential of SA-Fe/NG is only 30 mV less than 20% Pt/C in acidic medium, while it is 30 mV superior to 20% Pt/C in alkaline medium. Moreover, SA-Fe/NG shows extremely high stability with only 12 mV and 15 mV negative shifts after 5,000 cycles in acidic and alkaline media, respectively. Impressively, the SA-Fe/NG-based acidic proton exchange membrane fuel cell (PEMFC) exhibits a high power density of 823 mW cm−2. Combining experimental results and density-functional theory (DFT) calculations, we further reveal that the origin of high-ORR activity of SA-Fe/NG is from the Fe-pyrrolic-N species, because such molecular incorporation is the key, leading to the active site increase in an order of magnitude which successfully clarifies the bottleneck puzzle of why a small amount of iron in the SA-Fe catalysts can exhibit extremely superior ORR activity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29891686</pmid><doi>10.1073/pnas.1800771115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6981-7794</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-06, Vol.115 (26), p.6626-6631
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6042067
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Atoms & subatomic particles
Carbon
Catalysis
Catalysts
Chemical reduction
Chemical synthesis
Density functional theory
Fuel technology
Iron
Oxygen
Oxygen reduction reactions
Physical Sciences
Platinum
Proton exchange membrane fuel cells
title Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20high-activity%20origin%20of%20single-atom%20iron%20catalysts%20for%20oxygen%20reduction%20reaction&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Liu&rft.date=2018-06-26&rft.volume=115&rft.issue=26&rft.spage=6626&rft.epage=6631&rft.pages=6626-6631&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1800771115&rft_dat=%3Cjstor_pubme%3E26510788%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100882410&rft_id=info:pmid/29891686&rft_jstor_id=26510788&rfr_iscdi=true