PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus

Summary Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2018-08, Vol.16 (8), p.1514-1528
Hauptverfasser: He, Fang, Wang, Hou‐Ling, Li, Hui‐Guang, Su, Yanyan, Li, Shuang, Yang, Yanli, Feng, Cong‐Hua, Yin, Weilun, Xia, Xinli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1528
container_issue 8
container_start_page 1514
container_title Plant biotechnology journal
container_volume 16
creator He, Fang
Wang, Hou‐Ling
Li, Hui‐Guang
Su, Yanyan
Li, Shuang
Yang, Yanli
Feng, Cong‐Hua
Yin, Weilun
Xia, Xinli
description Summary Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.
doi_str_mv 10.1111/pbi.12893
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6041450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733295307</galeid><sourcerecordid>A733295307</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4413-92bf62b8f8737b4a4cf97094788de648dc71931ac31eec06e04a12277a2a136b3</originalsourceid><addsrcrecordid>eNqFks9uEzEQxlcIREvhwAsgS1x6aFL_W3t9QUqjQitValTgwMnyer2Jq117a6-LcusjVDwiT4LThAi4YB88Gv_mG4_1FcVbBKcor9OhtlOEK0GeFYeIMj7hrMTP9zGlB8WrGG8hxIiV7GVxgAWFrOTlYfFjYeYX327QCVAg1fYu2dE6cE5AZ5cqGtAG34OFH1KXIjBpWAU1Wq1OgHEr5bSJoAk-LVcjGH1nwiYF7q0Cs7PZz4dH65qkTQPi6Hs1qg7ozscUDKjX4Ob6MxiCz8BovQO5667N6-JFq7po3uzOo-Lrx_Mv84vJ1fWny_nsarKkFJGJwHXLcF21FSe8porqVnAoKK-qxjBaNZojQZDSBBmjITOQKoQx5worRFhNjooPW90h1b1ptHFjUJ0cgu1VWEuvrPz7xtmVXPp7ySBFtIRZ4HgnEPxdMnGUvY3adJ1yxqcoMUKs4phw9l8UCVGiEgkoMvr-H_TWp-DyT0gMWZVFS7gRnG6ppeqMtK71-Yk678b0VntnWpvzM04IFiWBPBe8-3Pa_Zi_rZCB0y3wPVeu9_cIyo3HZPaYfPKYXJxdPgXkF2LpxJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068211506</pqid></control><display><type>article</type><title>PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>He, Fang ; Wang, Hou‐Ling ; Li, Hui‐Guang ; Su, Yanyan ; Li, Shuang ; Yang, Yanli ; Feng, Cong‐Hua ; Yin, Weilun ; Xia, Xinli</creator><creatorcontrib>He, Fang ; Wang, Hou‐Ling ; Li, Hui‐Guang ; Su, Yanyan ; Li, Shuang ; Yang, Yanli ; Feng, Cong‐Hua ; Yin, Weilun ; Xia, Xinli</creatorcontrib><description>Summary Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12893</identifier><identifier>PMID: 29406575</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Abscisic acid ; Adaptation ; Arabidopsis thaliana ; biomass production ; Dehydration ; DNA binding proteins ; Drought ; Drought resistance ; drought tolerance ; forest trees ; Gas exchange ; gene overexpression ; Genetic engineering ; genetically modified organisms ; Hydrogen peroxide ; Leaves ; Ligases ; Molecular chains ; Molecular modelling ; PeCHYR1 ; Photosynthesis ; Physiological aspects ; Plant growth ; Poplar ; Populus ; Populus alba ; Populus euphratica ; Stomata ; stomatal closure ; stomatal movement ; Stress ; Stresses ; Transgenic plants ; Transpiration ; Trees ; Ubiquitin ; Ubiquitin-protein ligase ; water stress ; Water use ; Water use efficiency</subject><ispartof>Plant biotechnology journal, 2018-08, Vol.16 (8), p.1514-1528</ispartof><rights>2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3731-4970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12893$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12893$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29406575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Fang</creatorcontrib><creatorcontrib>Wang, Hou‐Ling</creatorcontrib><creatorcontrib>Li, Hui‐Guang</creatorcontrib><creatorcontrib>Su, Yanyan</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Yang, Yanli</creatorcontrib><creatorcontrib>Feng, Cong‐Hua</creatorcontrib><creatorcontrib>Yin, Weilun</creatorcontrib><creatorcontrib>Xia, Xinli</creatorcontrib><title>PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.</description><subject>Abscisic acid</subject><subject>Adaptation</subject><subject>Arabidopsis thaliana</subject><subject>biomass production</subject><subject>Dehydration</subject><subject>DNA binding proteins</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>drought tolerance</subject><subject>forest trees</subject><subject>Gas exchange</subject><subject>gene overexpression</subject><subject>Genetic engineering</subject><subject>genetically modified organisms</subject><subject>Hydrogen peroxide</subject><subject>Leaves</subject><subject>Ligases</subject><subject>Molecular chains</subject><subject>Molecular modelling</subject><subject>PeCHYR1</subject><subject>Photosynthesis</subject><subject>Physiological aspects</subject><subject>Plant growth</subject><subject>Poplar</subject><subject>Populus</subject><subject>Populus alba</subject><subject>Populus euphratica</subject><subject>Stomata</subject><subject>stomatal closure</subject><subject>stomatal movement</subject><subject>Stress</subject><subject>Stresses</subject><subject>Transgenic plants</subject><subject>Transpiration</subject><subject>Trees</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><subject>water stress</subject><subject>Water use</subject><subject>Water use efficiency</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNqFks9uEzEQxlcIREvhwAsgS1x6aFL_W3t9QUqjQitValTgwMnyer2Jq117a6-LcusjVDwiT4LThAi4YB88Gv_mG4_1FcVbBKcor9OhtlOEK0GeFYeIMj7hrMTP9zGlB8WrGG8hxIiV7GVxgAWFrOTlYfFjYeYX327QCVAg1fYu2dE6cE5AZ5cqGtAG34OFH1KXIjBpWAU1Wq1OgHEr5bSJoAk-LVcjGH1nwiYF7q0Cs7PZz4dH65qkTQPi6Hs1qg7ozscUDKjX4Ob6MxiCz8BovQO5667N6-JFq7po3uzOo-Lrx_Mv84vJ1fWny_nsarKkFJGJwHXLcF21FSe8porqVnAoKK-qxjBaNZojQZDSBBmjITOQKoQx5worRFhNjooPW90h1b1ptHFjUJ0cgu1VWEuvrPz7xtmVXPp7ySBFtIRZ4HgnEPxdMnGUvY3adJ1yxqcoMUKs4phw9l8UCVGiEgkoMvr-H_TWp-DyT0gMWZVFS7gRnG6ppeqMtK71-Yk678b0VntnWpvzM04IFiWBPBe8-3Pa_Zi_rZCB0y3wPVeu9_cIyo3HZPaYfPKYXJxdPgXkF2LpxJ4</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>He, Fang</creator><creator>Wang, Hou‐Ling</creator><creator>Li, Hui‐Guang</creator><creator>Su, Yanyan</creator><creator>Li, Shuang</creator><creator>Yang, Yanli</creator><creator>Feng, Cong‐Hua</creator><creator>Yin, Weilun</creator><creator>Xia, Xinli</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3731-4970</orcidid></search><sort><creationdate>201808</creationdate><title>PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus</title><author>He, Fang ; Wang, Hou‐Ling ; Li, Hui‐Guang ; Su, Yanyan ; Li, Shuang ; Yang, Yanli ; Feng, Cong‐Hua ; Yin, Weilun ; Xia, Xinli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4413-92bf62b8f8737b4a4cf97094788de648dc71931ac31eec06e04a12277a2a136b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abscisic acid</topic><topic>Adaptation</topic><topic>Arabidopsis thaliana</topic><topic>biomass production</topic><topic>Dehydration</topic><topic>DNA binding proteins</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>drought tolerance</topic><topic>forest trees</topic><topic>Gas exchange</topic><topic>gene overexpression</topic><topic>Genetic engineering</topic><topic>genetically modified organisms</topic><topic>Hydrogen peroxide</topic><topic>Leaves</topic><topic>Ligases</topic><topic>Molecular chains</topic><topic>Molecular modelling</topic><topic>PeCHYR1</topic><topic>Photosynthesis</topic><topic>Physiological aspects</topic><topic>Plant growth</topic><topic>Poplar</topic><topic>Populus</topic><topic>Populus alba</topic><topic>Populus euphratica</topic><topic>Stomata</topic><topic>stomatal closure</topic><topic>stomatal movement</topic><topic>Stress</topic><topic>Stresses</topic><topic>Transgenic plants</topic><topic>Transpiration</topic><topic>Trees</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><topic>water stress</topic><topic>Water use</topic><topic>Water use efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fang</creatorcontrib><creatorcontrib>Wang, Hou‐Ling</creatorcontrib><creatorcontrib>Li, Hui‐Guang</creatorcontrib><creatorcontrib>Su, Yanyan</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Yang, Yanli</creatorcontrib><creatorcontrib>Feng, Cong‐Hua</creatorcontrib><creatorcontrib>Yin, Weilun</creatorcontrib><creatorcontrib>Xia, Xinli</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fang</au><au>Wang, Hou‐Ling</au><au>Li, Hui‐Guang</au><au>Su, Yanyan</au><au>Li, Shuang</au><au>Yang, Yanli</au><au>Feng, Cong‐Hua</au><au>Yin, Weilun</au><au>Xia, Xinli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2018-08</date><risdate>2018</risdate><volume>16</volume><issue>8</issue><spage>1514</spage><epage>1528</epage><pages>1514-1528</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29406575</pmid><doi>10.1111/pbi.12893</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3731-4970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2018-08, Vol.16 (8), p.1514-1528
issn 1467-7644
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6041450
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Abscisic acid
Adaptation
Arabidopsis thaliana
biomass production
Dehydration
DNA binding proteins
Drought
Drought resistance
drought tolerance
forest trees
Gas exchange
gene overexpression
Genetic engineering
genetically modified organisms
Hydrogen peroxide
Leaves
Ligases
Molecular chains
Molecular modelling
PeCHYR1
Photosynthesis
Physiological aspects
Plant growth
Poplar
Populus
Populus alba
Populus euphratica
Stomata
stomatal closure
stomatal movement
Stress
Stresses
Transgenic plants
Transpiration
Trees
Ubiquitin
Ubiquitin-protein ligase
water stress
Water use
Water use efficiency
title PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PeCHYR1,%20a%20ubiquitin%20E3%20ligase%20from%20Populus%20euphratica,%20enhances%20drought%20tolerance%20via%20ABA%E2%80%90induced%20stomatal%20closure%20by%20ROS%20production%20in%20Populus&rft.jtitle=Plant%20biotechnology%20journal&rft.au=He,%20Fang&rft.date=2018-08&rft.volume=16&rft.issue=8&rft.spage=1514&rft.epage=1528&rft.pages=1514-1528&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12893&rft_dat=%3Cgale_pubme%3EA733295307%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068211506&rft_id=info:pmid/29406575&rft_galeid=A733295307&rfr_iscdi=true