PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus
Summary Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2018-08, Vol.16 (8), p.1514-1528 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1528 |
---|---|
container_issue | 8 |
container_start_page | 1514 |
container_title | Plant biotechnology journal |
container_volume | 16 |
creator | He, Fang Wang, Hou‐Ling Li, Hui‐Guang Su, Yanyan Li, Shuang Yang, Yanli Feng, Cong‐Hua Yin, Weilun Xia, Xinli |
description | Summary
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants. |
doi_str_mv | 10.1111/pbi.12893 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6041450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733295307</galeid><sourcerecordid>A733295307</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4413-92bf62b8f8737b4a4cf97094788de648dc71931ac31eec06e04a12277a2a136b3</originalsourceid><addsrcrecordid>eNqFks9uEzEQxlcIREvhwAsgS1x6aFL_W3t9QUqjQitValTgwMnyer2Jq117a6-LcusjVDwiT4LThAi4YB88Gv_mG4_1FcVbBKcor9OhtlOEK0GeFYeIMj7hrMTP9zGlB8WrGG8hxIiV7GVxgAWFrOTlYfFjYeYX327QCVAg1fYu2dE6cE5AZ5cqGtAG34OFH1KXIjBpWAU1Wq1OgHEr5bSJoAk-LVcjGH1nwiYF7q0Cs7PZz4dH65qkTQPi6Hs1qg7ozscUDKjX4Ob6MxiCz8BovQO5667N6-JFq7po3uzOo-Lrx_Mv84vJ1fWny_nsarKkFJGJwHXLcF21FSe8porqVnAoKK-qxjBaNZojQZDSBBmjITOQKoQx5worRFhNjooPW90h1b1ptHFjUJ0cgu1VWEuvrPz7xtmVXPp7ySBFtIRZ4HgnEPxdMnGUvY3adJ1yxqcoMUKs4phw9l8UCVGiEgkoMvr-H_TWp-DyT0gMWZVFS7gRnG6ppeqMtK71-Yk678b0VntnWpvzM04IFiWBPBe8-3Pa_Zi_rZCB0y3wPVeu9_cIyo3HZPaYfPKYXJxdPgXkF2LpxJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068211506</pqid></control><display><type>article</type><title>PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>He, Fang ; Wang, Hou‐Ling ; Li, Hui‐Guang ; Su, Yanyan ; Li, Shuang ; Yang, Yanli ; Feng, Cong‐Hua ; Yin, Weilun ; Xia, Xinli</creator><creatorcontrib>He, Fang ; Wang, Hou‐Ling ; Li, Hui‐Guang ; Su, Yanyan ; Li, Shuang ; Yang, Yanli ; Feng, Cong‐Hua ; Yin, Weilun ; Xia, Xinli</creatorcontrib><description>Summary
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12893</identifier><identifier>PMID: 29406575</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Abscisic acid ; Adaptation ; Arabidopsis thaliana ; biomass production ; Dehydration ; DNA binding proteins ; Drought ; Drought resistance ; drought tolerance ; forest trees ; Gas exchange ; gene overexpression ; Genetic engineering ; genetically modified organisms ; Hydrogen peroxide ; Leaves ; Ligases ; Molecular chains ; Molecular modelling ; PeCHYR1 ; Photosynthesis ; Physiological aspects ; Plant growth ; Poplar ; Populus ; Populus alba ; Populus euphratica ; Stomata ; stomatal closure ; stomatal movement ; Stress ; Stresses ; Transgenic plants ; Transpiration ; Trees ; Ubiquitin ; Ubiquitin-protein ligase ; water stress ; Water use ; Water use efficiency</subject><ispartof>Plant biotechnology journal, 2018-08, Vol.16 (8), p.1514-1528</ispartof><rights>2018 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2018 John Wiley & Sons, Inc.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3731-4970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12893$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12893$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29406575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Fang</creatorcontrib><creatorcontrib>Wang, Hou‐Ling</creatorcontrib><creatorcontrib>Li, Hui‐Guang</creatorcontrib><creatorcontrib>Su, Yanyan</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Yang, Yanli</creatorcontrib><creatorcontrib>Feng, Cong‐Hua</creatorcontrib><creatorcontrib>Yin, Weilun</creatorcontrib><creatorcontrib>Xia, Xinli</creatorcontrib><title>PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.</description><subject>Abscisic acid</subject><subject>Adaptation</subject><subject>Arabidopsis thaliana</subject><subject>biomass production</subject><subject>Dehydration</subject><subject>DNA binding proteins</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>drought tolerance</subject><subject>forest trees</subject><subject>Gas exchange</subject><subject>gene overexpression</subject><subject>Genetic engineering</subject><subject>genetically modified organisms</subject><subject>Hydrogen peroxide</subject><subject>Leaves</subject><subject>Ligases</subject><subject>Molecular chains</subject><subject>Molecular modelling</subject><subject>PeCHYR1</subject><subject>Photosynthesis</subject><subject>Physiological aspects</subject><subject>Plant growth</subject><subject>Poplar</subject><subject>Populus</subject><subject>Populus alba</subject><subject>Populus euphratica</subject><subject>Stomata</subject><subject>stomatal closure</subject><subject>stomatal movement</subject><subject>Stress</subject><subject>Stresses</subject><subject>Transgenic plants</subject><subject>Transpiration</subject><subject>Trees</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><subject>water stress</subject><subject>Water use</subject><subject>Water use efficiency</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNqFks9uEzEQxlcIREvhwAsgS1x6aFL_W3t9QUqjQitValTgwMnyer2Jq117a6-LcusjVDwiT4LThAi4YB88Gv_mG4_1FcVbBKcor9OhtlOEK0GeFYeIMj7hrMTP9zGlB8WrGG8hxIiV7GVxgAWFrOTlYfFjYeYX327QCVAg1fYu2dE6cE5AZ5cqGtAG34OFH1KXIjBpWAU1Wq1OgHEr5bSJoAk-LVcjGH1nwiYF7q0Cs7PZz4dH65qkTQPi6Hs1qg7ozscUDKjX4Ob6MxiCz8BovQO5667N6-JFq7po3uzOo-Lrx_Mv84vJ1fWny_nsarKkFJGJwHXLcF21FSe8porqVnAoKK-qxjBaNZojQZDSBBmjITOQKoQx5worRFhNjooPW90h1b1ptHFjUJ0cgu1VWEuvrPz7xtmVXPp7ySBFtIRZ4HgnEPxdMnGUvY3adJ1yxqcoMUKs4phw9l8UCVGiEgkoMvr-H_TWp-DyT0gMWZVFS7gRnG6ppeqMtK71-Yk678b0VntnWpvzM04IFiWBPBe8-3Pa_Zi_rZCB0y3wPVeu9_cIyo3HZPaYfPKYXJxdPgXkF2LpxJ4</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>He, Fang</creator><creator>Wang, Hou‐Ling</creator><creator>Li, Hui‐Guang</creator><creator>Su, Yanyan</creator><creator>Li, Shuang</creator><creator>Yang, Yanli</creator><creator>Feng, Cong‐Hua</creator><creator>Yin, Weilun</creator><creator>Xia, Xinli</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3731-4970</orcidid></search><sort><creationdate>201808</creationdate><title>PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus</title><author>He, Fang ; Wang, Hou‐Ling ; Li, Hui‐Guang ; Su, Yanyan ; Li, Shuang ; Yang, Yanli ; Feng, Cong‐Hua ; Yin, Weilun ; Xia, Xinli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4413-92bf62b8f8737b4a4cf97094788de648dc71931ac31eec06e04a12277a2a136b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abscisic acid</topic><topic>Adaptation</topic><topic>Arabidopsis thaliana</topic><topic>biomass production</topic><topic>Dehydration</topic><topic>DNA binding proteins</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>drought tolerance</topic><topic>forest trees</topic><topic>Gas exchange</topic><topic>gene overexpression</topic><topic>Genetic engineering</topic><topic>genetically modified organisms</topic><topic>Hydrogen peroxide</topic><topic>Leaves</topic><topic>Ligases</topic><topic>Molecular chains</topic><topic>Molecular modelling</topic><topic>PeCHYR1</topic><topic>Photosynthesis</topic><topic>Physiological aspects</topic><topic>Plant growth</topic><topic>Poplar</topic><topic>Populus</topic><topic>Populus alba</topic><topic>Populus euphratica</topic><topic>Stomata</topic><topic>stomatal closure</topic><topic>stomatal movement</topic><topic>Stress</topic><topic>Stresses</topic><topic>Transgenic plants</topic><topic>Transpiration</topic><topic>Trees</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><topic>water stress</topic><topic>Water use</topic><topic>Water use efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fang</creatorcontrib><creatorcontrib>Wang, Hou‐Ling</creatorcontrib><creatorcontrib>Li, Hui‐Guang</creatorcontrib><creatorcontrib>Su, Yanyan</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Yang, Yanli</creatorcontrib><creatorcontrib>Feng, Cong‐Hua</creatorcontrib><creatorcontrib>Yin, Weilun</creatorcontrib><creatorcontrib>Xia, Xinli</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fang</au><au>Wang, Hou‐Ling</au><au>Li, Hui‐Guang</au><au>Su, Yanyan</au><au>Li, Shuang</au><au>Yang, Yanli</au><au>Feng, Cong‐Hua</au><au>Yin, Weilun</au><au>Xia, Xinli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2018-08</date><risdate>2018</risdate><volume>16</volume><issue>8</issue><spage>1514</spage><epage>1528</epage><pages>1514-1528</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
Drought, a primary abiotic stress, seriously affects plant growth and productivity. Stomata play a vital role in regulating gas exchange and drought adaptation. However, limited knowledge exists of the molecular mechanisms underlying stomatal movement in trees. Here, PeCHYR1, a ubiquitin E3 ligase, was isolated from Populus euphratica, a model of stress adaptation in forest trees. PeCHYR1 was preferentially expressed in young leaves and was significantly induced by ABA (abscisic acid) and dehydration treatments. To study the potential biological functions of PeCHYR1, transgenic poplar 84K (Populus alba × Populus glandulosa) plants overexpressing PeCHYR1 were generated. PeCHYR1 overexpression significantly enhanced H2O2 production and reduced stomatal aperture. Transgenic lines exhibited increased sensitivity to exogenous ABA and greater drought tolerance than that of WT (wild‐type) controls. Moreover, up‐regulation of PeCHYR1 promoted stomatal closure and decreased transpiration, resulting in strongly elevated WUE (water use efficiency). When exposed to drought stress, transgenic poplar maintained higher photosynthetic activity and biomass accumulation. Taken together, these results suggest that PeCHYR1 plays a crucial role in enhancing drought tolerance via ABA‐induced stomatal closure caused by hydrogen peroxide (H2O2) production in transgenic poplar plants.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>29406575</pmid><doi>10.1111/pbi.12893</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3731-4970</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2018-08, Vol.16 (8), p.1514-1528 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6041450 |
source | Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Abscisic acid Adaptation Arabidopsis thaliana biomass production Dehydration DNA binding proteins Drought Drought resistance drought tolerance forest trees Gas exchange gene overexpression Genetic engineering genetically modified organisms Hydrogen peroxide Leaves Ligases Molecular chains Molecular modelling PeCHYR1 Photosynthesis Physiological aspects Plant growth Poplar Populus Populus alba Populus euphratica Stomata stomatal closure stomatal movement Stress Stresses Transgenic plants Transpiration Trees Ubiquitin Ubiquitin-protein ligase water stress Water use Water use efficiency |
title | PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA‐induced stomatal closure by ROS production in Populus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PeCHYR1,%20a%20ubiquitin%20E3%20ligase%20from%20Populus%20euphratica,%20enhances%20drought%20tolerance%20via%20ABA%E2%80%90induced%20stomatal%20closure%20by%20ROS%20production%20in%20Populus&rft.jtitle=Plant%20biotechnology%20journal&rft.au=He,%20Fang&rft.date=2018-08&rft.volume=16&rft.issue=8&rft.spage=1514&rft.epage=1528&rft.pages=1514-1528&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12893&rft_dat=%3Cgale_pubme%3EA733295307%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068211506&rft_id=info:pmid/29406575&rft_galeid=A733295307&rfr_iscdi=true |