A Novel Approach for Predicting Disease-lncRNA Associations Based on the Distance Correlation Set and Information of the miRNAs
Recently, accumulating laboratorial studies have indicated that plenty of long noncoding RNAs (lncRNAs) play important roles in various biological processes and are associated with many complex human diseases. Therefore, developing powerful computational models to predict correlation between lncRNAs...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2018-01, Vol.2018 (2018), p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2018 |
creator | Xuan, Zhanwei Wang, Lei Kuang, Linai Zhao, Haochen |
description | Recently, accumulating laboratorial studies have indicated that plenty of long noncoding RNAs (lncRNAs) play important roles in various biological processes and are associated with many complex human diseases. Therefore, developing powerful computational models to predict correlation between lncRNAs and diseases based on heterogeneous biological datasets will be important. However, there are few approaches to calculating and analyzing lncRNA-disease associations on the basis of information about miRNAs. In this article, a new computational method based on distance correlation set is developed to predict lncRNA-disease associations (DCSLDA). Comparing with existing state-of-the-art methods, we found that the major novelty of DCSLDA lies in the introduction of lncRNA-miRNA-disease network and distance correlation set; thus DCSLDA can be applied to predict potential lncRNA-disease associations without requiring any known disease-lncRNA associations. Simulation results show that DCSLDA can significantly improve previous existing models with reliable AUC of 0.8517 in the leave-one-out cross-validation. Furthermore, while implementing DCSLDA to prioritize candidate lncRNAs for three important cancers, in the first 0.5% of forecast results, 17 predicted associations are verified by other independent studies and biological experimental studies. Hence, it is anticipated that DCSLDA could be a great addition to the biomedical research field. |
doi_str_mv | 10.1155/2018/6747453 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6038663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2076898050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a9a74e6024a9c4a803d80986f4adb711ba44bbfb48bdfc0b989c328024b53f023</originalsourceid><addsrcrecordid>eNqN0c1vFCEYBnBiNLZWb54NRxMdCwPDMBeTcbXapKnGj8QbAeali5mBFWbb9OS_Xra73erNE4T3l4c3eRB6TskbSpvmuCZUHouWt7xhD9AhbbmsREvlw_2d_DxAT3L-RUhD24Y-RgeMEC5Yww_Rnx6fx0sYcb9apajtEruY8JcEg7ezDxf4vc-gM1RjsF_Pe9znHK3Xs48h43dlMOAY8LyEDZx1sIAXMSUYbwn-BjPWYcCnocRO27fobv3kS15-ih45PWZ4tjuP0I-TD98Xn6qzzx9PF_1ZZTlnc6U73XIQpOa6s1xLwgZJOikc14NpKTWac2Oc4dIMzhLTyc6yWhZvGuZIzY7Q223uam0mGCyEOelRrZKfdLpWUXv17yT4pbqIl0oQJoVgJeDlLiDF32vIs5p8tjCOOkBcZ1WTVshOkoYU-npLbYo5J3D7byhRm87UpjO166zwF3-vtsd3JRXwaguWPgz6yv9nHBQDTt9rympKKLsB4GCp_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2076898050</pqid></control><display><type>article</type><title>A Novel Approach for Predicting Disease-lncRNA Associations Based on the Distance Correlation Set and Information of the miRNAs</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Xuan, Zhanwei ; Wang, Lei ; Kuang, Linai ; Zhao, Haochen</creator><contributor>Migliore, Michele</contributor><creatorcontrib>Xuan, Zhanwei ; Wang, Lei ; Kuang, Linai ; Zhao, Haochen ; Migliore, Michele</creatorcontrib><description>Recently, accumulating laboratorial studies have indicated that plenty of long noncoding RNAs (lncRNAs) play important roles in various biological processes and are associated with many complex human diseases. Therefore, developing powerful computational models to predict correlation between lncRNAs and diseases based on heterogeneous biological datasets will be important. However, there are few approaches to calculating and analyzing lncRNA-disease associations on the basis of information about miRNAs. In this article, a new computational method based on distance correlation set is developed to predict lncRNA-disease associations (DCSLDA). Comparing with existing state-of-the-art methods, we found that the major novelty of DCSLDA lies in the introduction of lncRNA-miRNA-disease network and distance correlation set; thus DCSLDA can be applied to predict potential lncRNA-disease associations without requiring any known disease-lncRNA associations. Simulation results show that DCSLDA can significantly improve previous existing models with reliable AUC of 0.8517 in the leave-one-out cross-validation. Furthermore, while implementing DCSLDA to prioritize candidate lncRNAs for three important cancers, in the first 0.5% of forecast results, 17 predicted associations are verified by other independent studies and biological experimental studies. Hence, it is anticipated that DCSLDA could be a great addition to the biomedical research field.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2018/6747453</identifier><identifier>PMID: 30046354</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Carcinoma, Non-Small-Cell Lung - genetics ; Colorectal Neoplasms - genetics ; Female ; Forecasting ; Genetic Predisposition to Disease ; Humans ; Lung Neoplasms - genetics ; MicroRNAs ; Neoplasms - genetics ; RNA, Long Noncoding</subject><ispartof>Computational and mathematical methods in medicine, 2018-01, Vol.2018 (2018), p.1-12</ispartof><rights>Copyright © 2018 Haochen Zhao et al.</rights><rights>Copyright © 2018 Haochen Zhao et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a9a74e6024a9c4a803d80986f4adb711ba44bbfb48bdfc0b989c328024b53f023</citedby><cites>FETCH-LOGICAL-c443t-a9a74e6024a9c4a803d80986f4adb711ba44bbfb48bdfc0b989c328024b53f023</cites><orcidid>0000-0001-8794-3148 ; 0000-0002-4408-3640 ; 0000-0003-4048-5922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6038663/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6038663/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30046354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Migliore, Michele</contributor><creatorcontrib>Xuan, Zhanwei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Kuang, Linai</creatorcontrib><creatorcontrib>Zhao, Haochen</creatorcontrib><title>A Novel Approach for Predicting Disease-lncRNA Associations Based on the Distance Correlation Set and Information of the miRNAs</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Recently, accumulating laboratorial studies have indicated that plenty of long noncoding RNAs (lncRNAs) play important roles in various biological processes and are associated with many complex human diseases. Therefore, developing powerful computational models to predict correlation between lncRNAs and diseases based on heterogeneous biological datasets will be important. However, there are few approaches to calculating and analyzing lncRNA-disease associations on the basis of information about miRNAs. In this article, a new computational method based on distance correlation set is developed to predict lncRNA-disease associations (DCSLDA). Comparing with existing state-of-the-art methods, we found that the major novelty of DCSLDA lies in the introduction of lncRNA-miRNA-disease network and distance correlation set; thus DCSLDA can be applied to predict potential lncRNA-disease associations without requiring any known disease-lncRNA associations. Simulation results show that DCSLDA can significantly improve previous existing models with reliable AUC of 0.8517 in the leave-one-out cross-validation. Furthermore, while implementing DCSLDA to prioritize candidate lncRNAs for three important cancers, in the first 0.5% of forecast results, 17 predicted associations are verified by other independent studies and biological experimental studies. Hence, it is anticipated that DCSLDA could be a great addition to the biomedical research field.</description><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Female</subject><subject>Forecasting</subject><subject>Genetic Predisposition to Disease</subject><subject>Humans</subject><subject>Lung Neoplasms - genetics</subject><subject>MicroRNAs</subject><subject>Neoplasms - genetics</subject><subject>RNA, Long Noncoding</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqN0c1vFCEYBnBiNLZWb54NRxMdCwPDMBeTcbXapKnGj8QbAeali5mBFWbb9OS_Xra73erNE4T3l4c3eRB6TskbSpvmuCZUHouWt7xhD9AhbbmsREvlw_2d_DxAT3L-RUhD24Y-RgeMEC5Yww_Rnx6fx0sYcb9apajtEruY8JcEg7ezDxf4vc-gM1RjsF_Pe9znHK3Xs48h43dlMOAY8LyEDZx1sIAXMSUYbwn-BjPWYcCnocRO27fobv3kS15-ih45PWZ4tjuP0I-TD98Xn6qzzx9PF_1ZZTlnc6U73XIQpOa6s1xLwgZJOikc14NpKTWac2Oc4dIMzhLTyc6yWhZvGuZIzY7Q223uam0mGCyEOelRrZKfdLpWUXv17yT4pbqIl0oQJoVgJeDlLiDF32vIs5p8tjCOOkBcZ1WTVshOkoYU-npLbYo5J3D7byhRm87UpjO166zwF3-vtsd3JRXwaguWPgz6yv9nHBQDTt9rympKKLsB4GCp_w</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Xuan, Zhanwei</creator><creator>Wang, Lei</creator><creator>Kuang, Linai</creator><creator>Zhao, Haochen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8794-3148</orcidid><orcidid>https://orcid.org/0000-0002-4408-3640</orcidid><orcidid>https://orcid.org/0000-0003-4048-5922</orcidid></search><sort><creationdate>20180101</creationdate><title>A Novel Approach for Predicting Disease-lncRNA Associations Based on the Distance Correlation Set and Information of the miRNAs</title><author>Xuan, Zhanwei ; Wang, Lei ; Kuang, Linai ; Zhao, Haochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a9a74e6024a9c4a803d80986f4adb711ba44bbfb48bdfc0b989c328024b53f023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Female</topic><topic>Forecasting</topic><topic>Genetic Predisposition to Disease</topic><topic>Humans</topic><topic>Lung Neoplasms - genetics</topic><topic>MicroRNAs</topic><topic>Neoplasms - genetics</topic><topic>RNA, Long Noncoding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xuan, Zhanwei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Kuang, Linai</creatorcontrib><creatorcontrib>Zhao, Haochen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xuan, Zhanwei</au><au>Wang, Lei</au><au>Kuang, Linai</au><au>Zhao, Haochen</au><au>Migliore, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Approach for Predicting Disease-lncRNA Associations Based on the Distance Correlation Set and Information of the miRNAs</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Recently, accumulating laboratorial studies have indicated that plenty of long noncoding RNAs (lncRNAs) play important roles in various biological processes and are associated with many complex human diseases. Therefore, developing powerful computational models to predict correlation between lncRNAs and diseases based on heterogeneous biological datasets will be important. However, there are few approaches to calculating and analyzing lncRNA-disease associations on the basis of information about miRNAs. In this article, a new computational method based on distance correlation set is developed to predict lncRNA-disease associations (DCSLDA). Comparing with existing state-of-the-art methods, we found that the major novelty of DCSLDA lies in the introduction of lncRNA-miRNA-disease network and distance correlation set; thus DCSLDA can be applied to predict potential lncRNA-disease associations without requiring any known disease-lncRNA associations. Simulation results show that DCSLDA can significantly improve previous existing models with reliable AUC of 0.8517 in the leave-one-out cross-validation. Furthermore, while implementing DCSLDA to prioritize candidate lncRNAs for three important cancers, in the first 0.5% of forecast results, 17 predicted associations are verified by other independent studies and biological experimental studies. Hence, it is anticipated that DCSLDA could be a great addition to the biomedical research field.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>30046354</pmid><doi>10.1155/2018/6747453</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8794-3148</orcidid><orcidid>https://orcid.org/0000-0002-4408-3640</orcidid><orcidid>https://orcid.org/0000-0003-4048-5922</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2018-01, Vol.2018 (2018), p.1-12 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6038663 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection |
subjects | Carcinoma, Non-Small-Cell Lung - genetics Colorectal Neoplasms - genetics Female Forecasting Genetic Predisposition to Disease Humans Lung Neoplasms - genetics MicroRNAs Neoplasms - genetics RNA, Long Noncoding |
title | A Novel Approach for Predicting Disease-lncRNA Associations Based on the Distance Correlation Set and Information of the miRNAs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Approach%20for%20Predicting%20Disease-lncRNA%20Associations%20Based%20on%20the%20Distance%20Correlation%20Set%20and%20Information%20of%20the%20miRNAs&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Xuan,%20Zhanwei&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2018/6747453&rft_dat=%3Cproquest_pubme%3E2076898050%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2076898050&rft_id=info:pmid/30046354&rfr_iscdi=true |