Classification of Sputum Sounds Using Artificial Neural Network and Wavelet Transform

Sputum sounds are biological signals used to evaluate the condition of sputum deposition in a respiratory system. To improve the efficiency of intensive care unit (ICU) staff and achieve timely clearance of secretion in patients with mechanical ventilation, we propose a method consisting of feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological sciences 2018-01, Vol.14 (8), p.938-945
Hauptverfasser: Shi, Yan, Wang, Guoliang, Niu, Jinglong, Zhang, Qimin, Cai, Maolin, Sun, Baoqing, Wang, Dandan, Xue, Mei, Zhang, Xiaohua Douglas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 945
container_issue 8
container_start_page 938
container_title International journal of biological sciences
container_volume 14
creator Shi, Yan
Wang, Guoliang
Niu, Jinglong
Zhang, Qimin
Cai, Maolin
Sun, Baoqing
Wang, Dandan
Xue, Mei
Zhang, Xiaohua Douglas
description Sputum sounds are biological signals used to evaluate the condition of sputum deposition in a respiratory system. To improve the efficiency of intensive care unit (ICU) staff and achieve timely clearance of secretion in patients with mechanical ventilation, we propose a method consisting of feature extraction of sputum sound signals using the wavelet transform and classification of sputum existence using artificial neural network (ANN). Sputum sound signals were decomposed into the frequency subbands using the wavelet transform. A set of features was extracted from the subbands to represent the distribution of wavelet coefficients. An ANN system, trained using the Back Propagation (BP) algorithm, was implemented to recognize the existence of sputum sounds. The maximum precision rate of automatic recognition in texture of signals was as high as 84.53%. This study can be referred to as the optimization of performance and design in the automatic technology for sputum detection using sputum sound signals.
doi_str_mv 10.7150/ijbs.23855
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6036751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067884571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-40ce9ecfef5e6b1c02dbb3eed632d52fa404b6bc9a73c6dfb927a5b28404e8c33</originalsourceid><addsrcrecordid>eNpdkU9LJDEQxYOs6Kh78QMsgb2IMJpOOun0ZUGG9Q-IHnTYY0jSFc1sdzKbdLv47e3RcZjdUxVVPx6v6iF0XJCzquDk3C9MPqNMcr6DJkVZ1lNKpfyy1e-jg5wXhDDBJdlD-7SuZV2QcoLms1bn7J23uvcx4Ojww3Lohw4_xCE0Gc-zD0_4IvUrxusW38GQ3kv_N6bfWIcG_9Iv0EKPH5MO2cXUHaFdp9sMX9f1EM0vfz7Orqe391c3s4vbqS2J6KclsVCDdeA4CFNYQhtjGEAjGG04dbokpRHG1rpiVjTO1LTS3FA5zkFaxg7Rjw_d5WA6aCyEfvSmlsl3Or2qqL36dxP8s3qKL0qMr6h4MQqcrAVS_DNA7lXns4W21QHikBUlopKy5NUK_f4fuohDCuN5IyUZl1RwMlKnH5RNMecEbmOmIGqVllqlpd7TGuFv2_Y36Gc87A15CZKm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083582650</pqid></control><display><type>article</type><title>Classification of Sputum Sounds Using Artificial Neural Network and Wavelet Transform</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Shi, Yan ; Wang, Guoliang ; Niu, Jinglong ; Zhang, Qimin ; Cai, Maolin ; Sun, Baoqing ; Wang, Dandan ; Xue, Mei ; Zhang, Xiaohua Douglas</creator><creatorcontrib>Shi, Yan ; Wang, Guoliang ; Niu, Jinglong ; Zhang, Qimin ; Cai, Maolin ; Sun, Baoqing ; Wang, Dandan ; Xue, Mei ; Zhang, Xiaohua Douglas</creatorcontrib><description>Sputum sounds are biological signals used to evaluate the condition of sputum deposition in a respiratory system. To improve the efficiency of intensive care unit (ICU) staff and achieve timely clearance of secretion in patients with mechanical ventilation, we propose a method consisting of feature extraction of sputum sound signals using the wavelet transform and classification of sputum existence using artificial neural network (ANN). Sputum sound signals were decomposed into the frequency subbands using the wavelet transform. A set of features was extracted from the subbands to represent the distribution of wavelet coefficients. An ANN system, trained using the Back Propagation (BP) algorithm, was implemented to recognize the existence of sputum sounds. The maximum precision rate of automatic recognition in texture of signals was as high as 84.53%. This study can be referred to as the optimization of performance and design in the automatic technology for sputum detection using sputum sound signals.</description><identifier>ISSN: 1449-2288</identifier><identifier>EISSN: 1449-2288</identifier><identifier>DOI: 10.7150/ijbs.23855</identifier><identifier>PMID: 29989104</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher Pty Ltd</publisher><subject>Acoustics ; Algorithms ; Artificial neural networks ; Back propagation ; Classification ; Design optimization ; Feature extraction ; Humans ; Mechanical ventilation ; Neural networks ; Neural Networks, Computer ; Research Paper ; Respiratory System ; Secretion ; Sound ; Sputum ; Sputum - physiology ; Texture recognition ; Ventilation ; Wave propagation ; Wavelet Analysis ; Wavelet transforms</subject><ispartof>International journal of biological sciences, 2018-01, Vol.14 (8), p.938-945</ispartof><rights>Copyright BioMed Central 2018</rights><rights>Ivyspring International Publisher 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-40ce9ecfef5e6b1c02dbb3eed632d52fa404b6bc9a73c6dfb927a5b28404e8c33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036751/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036751/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29989104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Yan</creatorcontrib><creatorcontrib>Wang, Guoliang</creatorcontrib><creatorcontrib>Niu, Jinglong</creatorcontrib><creatorcontrib>Zhang, Qimin</creatorcontrib><creatorcontrib>Cai, Maolin</creatorcontrib><creatorcontrib>Sun, Baoqing</creatorcontrib><creatorcontrib>Wang, Dandan</creatorcontrib><creatorcontrib>Xue, Mei</creatorcontrib><creatorcontrib>Zhang, Xiaohua Douglas</creatorcontrib><title>Classification of Sputum Sounds Using Artificial Neural Network and Wavelet Transform</title><title>International journal of biological sciences</title><addtitle>Int J Biol Sci</addtitle><description>Sputum sounds are biological signals used to evaluate the condition of sputum deposition in a respiratory system. To improve the efficiency of intensive care unit (ICU) staff and achieve timely clearance of secretion in patients with mechanical ventilation, we propose a method consisting of feature extraction of sputum sound signals using the wavelet transform and classification of sputum existence using artificial neural network (ANN). Sputum sound signals were decomposed into the frequency subbands using the wavelet transform. A set of features was extracted from the subbands to represent the distribution of wavelet coefficients. An ANN system, trained using the Back Propagation (BP) algorithm, was implemented to recognize the existence of sputum sounds. The maximum precision rate of automatic recognition in texture of signals was as high as 84.53%. This study can be referred to as the optimization of performance and design in the automatic technology for sputum detection using sputum sound signals.</description><subject>Acoustics</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Classification</subject><subject>Design optimization</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Mechanical ventilation</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Research Paper</subject><subject>Respiratory System</subject><subject>Secretion</subject><subject>Sound</subject><subject>Sputum</subject><subject>Sputum - physiology</subject><subject>Texture recognition</subject><subject>Ventilation</subject><subject>Wave propagation</subject><subject>Wavelet Analysis</subject><subject>Wavelet transforms</subject><issn>1449-2288</issn><issn>1449-2288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU9LJDEQxYOs6Kh78QMsgb2IMJpOOun0ZUGG9Q-IHnTYY0jSFc1sdzKbdLv47e3RcZjdUxVVPx6v6iF0XJCzquDk3C9MPqNMcr6DJkVZ1lNKpfyy1e-jg5wXhDDBJdlD-7SuZV2QcoLms1bn7J23uvcx4Ojww3Lohw4_xCE0Gc-zD0_4IvUrxusW38GQ3kv_N6bfWIcG_9Iv0EKPH5MO2cXUHaFdp9sMX9f1EM0vfz7Orqe391c3s4vbqS2J6KclsVCDdeA4CFNYQhtjGEAjGG04dbokpRHG1rpiVjTO1LTS3FA5zkFaxg7Rjw_d5WA6aCyEfvSmlsl3Or2qqL36dxP8s3qKL0qMr6h4MQqcrAVS_DNA7lXns4W21QHikBUlopKy5NUK_f4fuohDCuN5IyUZl1RwMlKnH5RNMecEbmOmIGqVllqlpd7TGuFv2_Y36Gc87A15CZKm</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Shi, Yan</creator><creator>Wang, Guoliang</creator><creator>Niu, Jinglong</creator><creator>Zhang, Qimin</creator><creator>Cai, Maolin</creator><creator>Sun, Baoqing</creator><creator>Wang, Dandan</creator><creator>Xue, Mei</creator><creator>Zhang, Xiaohua Douglas</creator><general>Ivyspring International Publisher Pty Ltd</general><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180101</creationdate><title>Classification of Sputum Sounds Using Artificial Neural Network and Wavelet Transform</title><author>Shi, Yan ; Wang, Guoliang ; Niu, Jinglong ; Zhang, Qimin ; Cai, Maolin ; Sun, Baoqing ; Wang, Dandan ; Xue, Mei ; Zhang, Xiaohua Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-40ce9ecfef5e6b1c02dbb3eed632d52fa404b6bc9a73c6dfb927a5b28404e8c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Classification</topic><topic>Design optimization</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Mechanical ventilation</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Research Paper</topic><topic>Respiratory System</topic><topic>Secretion</topic><topic>Sound</topic><topic>Sputum</topic><topic>Sputum - physiology</topic><topic>Texture recognition</topic><topic>Ventilation</topic><topic>Wave propagation</topic><topic>Wavelet Analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yan</creatorcontrib><creatorcontrib>Wang, Guoliang</creatorcontrib><creatorcontrib>Niu, Jinglong</creatorcontrib><creatorcontrib>Zhang, Qimin</creatorcontrib><creatorcontrib>Cai, Maolin</creatorcontrib><creatorcontrib>Sun, Baoqing</creatorcontrib><creatorcontrib>Wang, Dandan</creatorcontrib><creatorcontrib>Xue, Mei</creatorcontrib><creatorcontrib>Zhang, Xiaohua Douglas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yan</au><au>Wang, Guoliang</au><au>Niu, Jinglong</au><au>Zhang, Qimin</au><au>Cai, Maolin</au><au>Sun, Baoqing</au><au>Wang, Dandan</au><au>Xue, Mei</au><au>Zhang, Xiaohua Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Sputum Sounds Using Artificial Neural Network and Wavelet Transform</atitle><jtitle>International journal of biological sciences</jtitle><addtitle>Int J Biol Sci</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>14</volume><issue>8</issue><spage>938</spage><epage>945</epage><pages>938-945</pages><issn>1449-2288</issn><eissn>1449-2288</eissn><abstract>Sputum sounds are biological signals used to evaluate the condition of sputum deposition in a respiratory system. To improve the efficiency of intensive care unit (ICU) staff and achieve timely clearance of secretion in patients with mechanical ventilation, we propose a method consisting of feature extraction of sputum sound signals using the wavelet transform and classification of sputum existence using artificial neural network (ANN). Sputum sound signals were decomposed into the frequency subbands using the wavelet transform. A set of features was extracted from the subbands to represent the distribution of wavelet coefficients. An ANN system, trained using the Back Propagation (BP) algorithm, was implemented to recognize the existence of sputum sounds. The maximum precision rate of automatic recognition in texture of signals was as high as 84.53%. This study can be referred to as the optimization of performance and design in the automatic technology for sputum detection using sputum sound signals.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher Pty Ltd</pub><pmid>29989104</pmid><doi>10.7150/ijbs.23855</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1449-2288
ispartof International journal of biological sciences, 2018-01, Vol.14 (8), p.938-945
issn 1449-2288
1449-2288
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6036751
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Acoustics
Algorithms
Artificial neural networks
Back propagation
Classification
Design optimization
Feature extraction
Humans
Mechanical ventilation
Neural networks
Neural Networks, Computer
Research Paper
Respiratory System
Secretion
Sound
Sputum
Sputum - physiology
Texture recognition
Ventilation
Wave propagation
Wavelet Analysis
Wavelet transforms
title Classification of Sputum Sounds Using Artificial Neural Network and Wavelet Transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Sputum%20Sounds%20Using%20Artificial%20Neural%20Network%20and%20Wavelet%20Transform&rft.jtitle=International%20journal%20of%20biological%20sciences&rft.au=Shi,%20Yan&rft.date=2018-01-01&rft.volume=14&rft.issue=8&rft.spage=938&rft.epage=945&rft.pages=938-945&rft.issn=1449-2288&rft.eissn=1449-2288&rft_id=info:doi/10.7150/ijbs.23855&rft_dat=%3Cproquest_pubme%3E2067884571%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083582650&rft_id=info:pmid/29989104&rfr_iscdi=true