Usp25m protease regulates ubiquitin-like processing of TUG proteins to control GLUT4 glucose transporter translocation in adipocytes
Insulin stimulates the exocytic translocation of specialized vesicles in adipocytes, which inserts GLUT4 glucose transporters into the plasma membrane to enhance glucose uptake. Previous results support a model in which TUG (Tether containing a UBX domain for GLUT4) proteins trap these GLUT4 storage...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2018-07, Vol.293 (27), p.10466-10486 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10486 |
---|---|
container_issue | 27 |
container_start_page | 10466 |
container_title | The Journal of biological chemistry |
container_volume | 293 |
creator | Habtemichael, Estifanos N. Li, Don T. Alcázar-Román, Abel Westergaard, Xavier O. Li, Muyi Petersen, Max C. Li, Hanbing DeVries, Stephen G. Li, Eric Julca-Zevallos, Omar Wolenski, Joseph S. Bogan, Jonathan S. |
description | Insulin stimulates the exocytic translocation of specialized vesicles in adipocytes, which inserts GLUT4 glucose transporters into the plasma membrane to enhance glucose uptake. Previous results support a model in which TUG (Tether containing a UBX domain for GLUT4) proteins trap these GLUT4 storage vesicles at the Golgi matrix and in which insulin triggers endoproteolytic cleavage of TUG to translocate GLUT4. Here, we identify the muscle splice form of Usp25 (Usp25m) as a protease required for insulin-stimulated TUG cleavage and GLUT4 translocation in adipocytes. Usp25m is expressed in adipocytes, binds TUG and GLUT4, dissociates from TUG-bound vesicles after insulin addition, and colocalizes with TUG and insulin-responsive cargoes in unstimulated cells. Previous results show that TUG proteolysis generates the ubiquitin-like protein, TUGUL (for TUGubiquitin-like). We now show that TUGUL modifies the kinesin motor protein, KIF5B, and that TUG proteolysis is required to load GLUT4 onto these motors. Insulin stimulates TUG proteolytic processing independently of phosphatidylinositol 3-kinase. In nonadipocytes, TUG cleavage can be reconstituted by transfection of Usp25m, but not the related Usp25a isoform, together with other proteins present on GLUT4 vesicles. In rodents with diet-induced insulin resistance, TUG proteolysis and Usp25m protein abundance are reduced in adipose tissue. These effects occur soon after dietary manipulation, prior to the attenuation of insulin signaling to Akt. Together with previous data, these results support a model whereby insulin acts through Usp25m to mediate TUG cleavage, which liberates GLUT4 storage vesicles from the Golgi matrix and activates their microtubule-based movement to the plasma membrane. This TUG proteolytic pathway for insulin action is independent of Akt and is impaired by nutritional excess. |
doi_str_mv | 10.1074/jbc.RA118.003021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6036200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820338059</els_id><sourcerecordid>2041632609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-4cad05f831013eceaadb5cf8be23e75a67d005c7c8612737005b8cc5929e74f3</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhS0EosPAnhXykk2mfsR5sECqqjIgjYSEZiR2lnNzM7hk7NR2KnXPD8clpSoLvPHrnHOv7kfIW842nNXl-XUHm28XnDcbxiQT_BlZcdbIQir-_TlZsfxUtEI1Z-RVjNcsr7LlL8mZaOtaVoqvyK9DnIQ60Sn4hCYiDXicR5Mw0rmzN7NN1hWj_Yn3CsAYrTtSP9D9Ybt4rIs0eQrepeBHut0d9iU9jjP4HJaCcXHyIWFYzqMHk6x31Dpqejt5uMulXpMXgxkjvnnY12T_6Wp_-bnYfd1-ubzYFaAqlooSTM_U0EjOuERAY_pOwdB0KCTWylR1z5iCGpqKi1rW-dI1AKoVLdblINfk4xI7zd0Je8Dcshn1FOzJhDvtjdX__jj7Qx_9ra6YrESe8Jq8fwgI_mbGmPTJRsBxNA79HLVgJa-kqFibpWyRQvAxBhwey3Cm79npzE7_YacXdtny7ml7j4a_sLLgwyLAPKNbi0FHsOgAexsQku69_X_6bzbqrTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041632609</pqid></control><display><type>article</type><title>Usp25m protease regulates ubiquitin-like processing of TUG proteins to control GLUT4 glucose transporter translocation in adipocytes</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Habtemichael, Estifanos N. ; Li, Don T. ; Alcázar-Román, Abel ; Westergaard, Xavier O. ; Li, Muyi ; Petersen, Max C. ; Li, Hanbing ; DeVries, Stephen G. ; Li, Eric ; Julca-Zevallos, Omar ; Wolenski, Joseph S. ; Bogan, Jonathan S.</creator><creatorcontrib>Habtemichael, Estifanos N. ; Li, Don T. ; Alcázar-Román, Abel ; Westergaard, Xavier O. ; Li, Muyi ; Petersen, Max C. ; Li, Hanbing ; DeVries, Stephen G. ; Li, Eric ; Julca-Zevallos, Omar ; Wolenski, Joseph S. ; Bogan, Jonathan S.</creatorcontrib><description>Insulin stimulates the exocytic translocation of specialized vesicles in adipocytes, which inserts GLUT4 glucose transporters into the plasma membrane to enhance glucose uptake. Previous results support a model in which TUG (Tether containing a UBX domain for GLUT4) proteins trap these GLUT4 storage vesicles at the Golgi matrix and in which insulin triggers endoproteolytic cleavage of TUG to translocate GLUT4. Here, we identify the muscle splice form of Usp25 (Usp25m) as a protease required for insulin-stimulated TUG cleavage and GLUT4 translocation in adipocytes. Usp25m is expressed in adipocytes, binds TUG and GLUT4, dissociates from TUG-bound vesicles after insulin addition, and colocalizes with TUG and insulin-responsive cargoes in unstimulated cells. Previous results show that TUG proteolysis generates the ubiquitin-like protein, TUGUL (for TUGubiquitin-like). We now show that TUGUL modifies the kinesin motor protein, KIF5B, and that TUG proteolysis is required to load GLUT4 onto these motors. Insulin stimulates TUG proteolytic processing independently of phosphatidylinositol 3-kinase. In nonadipocytes, TUG cleavage can be reconstituted by transfection of Usp25m, but not the related Usp25a isoform, together with other proteins present on GLUT4 vesicles. In rodents with diet-induced insulin resistance, TUG proteolysis and Usp25m protein abundance are reduced in adipose tissue. These effects occur soon after dietary manipulation, prior to the attenuation of insulin signaling to Akt. Together with previous data, these results support a model whereby insulin acts through Usp25m to mediate TUG cleavage, which liberates GLUT4 storage vesicles from the Golgi matrix and activates their microtubule-based movement to the plasma membrane. This TUG proteolytic pathway for insulin action is independent of Akt and is impaired by nutritional excess.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA118.003021</identifier><identifier>PMID: 29773651</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adipocyte ; Adipocytes - cytology ; Adipocytes - drug effects ; Adipocytes - metabolism ; Animals ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Biology ; Cell Membrane - metabolism ; Cells, Cultured ; Glucose - metabolism ; glucose transporter type 4 (GLUT4) ; Glucose Transporter Type 4 - genetics ; Glucose Transporter Type 4 - metabolism ; Hypoglycemic Agents - pharmacology ; insulin ; Insulin - pharmacology ; insulin resistance ; Intracellular Signaling Peptides and Proteins ; kinesin ; Kinesin - genetics ; Kinesin - metabolism ; Male ; membrane trafficking ; Mice ; Mice, Inbred C57BL ; Motor Activity ; protein processing ; protein translocation ; Protein Transport ; Proteolysis ; Rats ; Rats, Sprague-Dawley ; Signal Transduction ; Ubiquitin - metabolism ; Ubiquitin Thiolesterase - genetics ; Ubiquitin Thiolesterase - metabolism ; ubiquitylation (ubiquitination)</subject><ispartof>The Journal of biological chemistry, 2018-07, Vol.293 (27), p.10466-10486</ispartof><rights>2018 © 2018 Habtemichael et al.</rights><rights>2018 Habtemichael et al.</rights><rights>2018 Habtemichael et al. 2018 Habtemichael et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-4cad05f831013eceaadb5cf8be23e75a67d005c7c8612737005b8cc5929e74f3</citedby><cites>FETCH-LOGICAL-c560t-4cad05f831013eceaadb5cf8be23e75a67d005c7c8612737005b8cc5929e74f3</cites><orcidid>0000-0001-6463-8466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036200/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036200/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29773651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Habtemichael, Estifanos N.</creatorcontrib><creatorcontrib>Li, Don T.</creatorcontrib><creatorcontrib>Alcázar-Román, Abel</creatorcontrib><creatorcontrib>Westergaard, Xavier O.</creatorcontrib><creatorcontrib>Li, Muyi</creatorcontrib><creatorcontrib>Petersen, Max C.</creatorcontrib><creatorcontrib>Li, Hanbing</creatorcontrib><creatorcontrib>DeVries, Stephen G.</creatorcontrib><creatorcontrib>Li, Eric</creatorcontrib><creatorcontrib>Julca-Zevallos, Omar</creatorcontrib><creatorcontrib>Wolenski, Joseph S.</creatorcontrib><creatorcontrib>Bogan, Jonathan S.</creatorcontrib><title>Usp25m protease regulates ubiquitin-like processing of TUG proteins to control GLUT4 glucose transporter translocation in adipocytes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Insulin stimulates the exocytic translocation of specialized vesicles in adipocytes, which inserts GLUT4 glucose transporters into the plasma membrane to enhance glucose uptake. Previous results support a model in which TUG (Tether containing a UBX domain for GLUT4) proteins trap these GLUT4 storage vesicles at the Golgi matrix and in which insulin triggers endoproteolytic cleavage of TUG to translocate GLUT4. Here, we identify the muscle splice form of Usp25 (Usp25m) as a protease required for insulin-stimulated TUG cleavage and GLUT4 translocation in adipocytes. Usp25m is expressed in adipocytes, binds TUG and GLUT4, dissociates from TUG-bound vesicles after insulin addition, and colocalizes with TUG and insulin-responsive cargoes in unstimulated cells. Previous results show that TUG proteolysis generates the ubiquitin-like protein, TUGUL (for TUGubiquitin-like). We now show that TUGUL modifies the kinesin motor protein, KIF5B, and that TUG proteolysis is required to load GLUT4 onto these motors. Insulin stimulates TUG proteolytic processing independently of phosphatidylinositol 3-kinase. In nonadipocytes, TUG cleavage can be reconstituted by transfection of Usp25m, but not the related Usp25a isoform, together with other proteins present on GLUT4 vesicles. In rodents with diet-induced insulin resistance, TUG proteolysis and Usp25m protein abundance are reduced in adipose tissue. These effects occur soon after dietary manipulation, prior to the attenuation of insulin signaling to Akt. Together with previous data, these results support a model whereby insulin acts through Usp25m to mediate TUG cleavage, which liberates GLUT4 storage vesicles from the Golgi matrix and activates their microtubule-based movement to the plasma membrane. This TUG proteolytic pathway for insulin action is independent of Akt and is impaired by nutritional excess.</description><subject>adipocyte</subject><subject>Adipocytes - cytology</subject><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>Animals</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Cell Membrane - metabolism</subject><subject>Cells, Cultured</subject><subject>Glucose - metabolism</subject><subject>glucose transporter type 4 (GLUT4)</subject><subject>Glucose Transporter Type 4 - genetics</subject><subject>Glucose Transporter Type 4 - metabolism</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>insulin</subject><subject>Insulin - pharmacology</subject><subject>insulin resistance</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>kinesin</subject><subject>Kinesin - genetics</subject><subject>Kinesin - metabolism</subject><subject>Male</subject><subject>membrane trafficking</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Motor Activity</subject><subject>protein processing</subject><subject>protein translocation</subject><subject>Protein Transport</subject><subject>Proteolysis</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Transduction</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin Thiolesterase - genetics</subject><subject>Ubiquitin Thiolesterase - metabolism</subject><subject>ubiquitylation (ubiquitination)</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAUhS0EosPAnhXykk2mfsR5sECqqjIgjYSEZiR2lnNzM7hk7NR2KnXPD8clpSoLvPHrnHOv7kfIW842nNXl-XUHm28XnDcbxiQT_BlZcdbIQir-_TlZsfxUtEI1Z-RVjNcsr7LlL8mZaOtaVoqvyK9DnIQ60Sn4hCYiDXicR5Mw0rmzN7NN1hWj_Yn3CsAYrTtSP9D9Ybt4rIs0eQrepeBHut0d9iU9jjP4HJaCcXHyIWFYzqMHk6x31Dpqejt5uMulXpMXgxkjvnnY12T_6Wp_-bnYfd1-ubzYFaAqlooSTM_U0EjOuERAY_pOwdB0KCTWylR1z5iCGpqKi1rW-dI1AKoVLdblINfk4xI7zd0Je8Dcshn1FOzJhDvtjdX__jj7Qx_9ra6YrESe8Jq8fwgI_mbGmPTJRsBxNA79HLVgJa-kqFibpWyRQvAxBhwey3Cm79npzE7_YacXdtny7ml7j4a_sLLgwyLAPKNbi0FHsOgAexsQku69_X_6bzbqrTQ</recordid><startdate>20180706</startdate><enddate>20180706</enddate><creator>Habtemichael, Estifanos N.</creator><creator>Li, Don T.</creator><creator>Alcázar-Román, Abel</creator><creator>Westergaard, Xavier O.</creator><creator>Li, Muyi</creator><creator>Petersen, Max C.</creator><creator>Li, Hanbing</creator><creator>DeVries, Stephen G.</creator><creator>Li, Eric</creator><creator>Julca-Zevallos, Omar</creator><creator>Wolenski, Joseph S.</creator><creator>Bogan, Jonathan S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6463-8466</orcidid></search><sort><creationdate>20180706</creationdate><title>Usp25m protease regulates ubiquitin-like processing of TUG proteins to control GLUT4 glucose transporter translocation in adipocytes</title><author>Habtemichael, Estifanos N. ; Li, Don T. ; Alcázar-Román, Abel ; Westergaard, Xavier O. ; Li, Muyi ; Petersen, Max C. ; Li, Hanbing ; DeVries, Stephen G. ; Li, Eric ; Julca-Zevallos, Omar ; Wolenski, Joseph S. ; Bogan, Jonathan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-4cad05f831013eceaadb5cf8be23e75a67d005c7c8612737005b8cc5929e74f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adipocyte</topic><topic>Adipocytes - cytology</topic><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>Animals</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Cell Membrane - metabolism</topic><topic>Cells, Cultured</topic><topic>Glucose - metabolism</topic><topic>glucose transporter type 4 (GLUT4)</topic><topic>Glucose Transporter Type 4 - genetics</topic><topic>Glucose Transporter Type 4 - metabolism</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>insulin</topic><topic>Insulin - pharmacology</topic><topic>insulin resistance</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>kinesin</topic><topic>Kinesin - genetics</topic><topic>Kinesin - metabolism</topic><topic>Male</topic><topic>membrane trafficking</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Motor Activity</topic><topic>protein processing</topic><topic>protein translocation</topic><topic>Protein Transport</topic><topic>Proteolysis</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Transduction</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin Thiolesterase - genetics</topic><topic>Ubiquitin Thiolesterase - metabolism</topic><topic>ubiquitylation (ubiquitination)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habtemichael, Estifanos N.</creatorcontrib><creatorcontrib>Li, Don T.</creatorcontrib><creatorcontrib>Alcázar-Román, Abel</creatorcontrib><creatorcontrib>Westergaard, Xavier O.</creatorcontrib><creatorcontrib>Li, Muyi</creatorcontrib><creatorcontrib>Petersen, Max C.</creatorcontrib><creatorcontrib>Li, Hanbing</creatorcontrib><creatorcontrib>DeVries, Stephen G.</creatorcontrib><creatorcontrib>Li, Eric</creatorcontrib><creatorcontrib>Julca-Zevallos, Omar</creatorcontrib><creatorcontrib>Wolenski, Joseph S.</creatorcontrib><creatorcontrib>Bogan, Jonathan S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habtemichael, Estifanos N.</au><au>Li, Don T.</au><au>Alcázar-Román, Abel</au><au>Westergaard, Xavier O.</au><au>Li, Muyi</au><au>Petersen, Max C.</au><au>Li, Hanbing</au><au>DeVries, Stephen G.</au><au>Li, Eric</au><au>Julca-Zevallos, Omar</au><au>Wolenski, Joseph S.</au><au>Bogan, Jonathan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Usp25m protease regulates ubiquitin-like processing of TUG proteins to control GLUT4 glucose transporter translocation in adipocytes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2018-07-06</date><risdate>2018</risdate><volume>293</volume><issue>27</issue><spage>10466</spage><epage>10486</epage><pages>10466-10486</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Insulin stimulates the exocytic translocation of specialized vesicles in adipocytes, which inserts GLUT4 glucose transporters into the plasma membrane to enhance glucose uptake. Previous results support a model in which TUG (Tether containing a UBX domain for GLUT4) proteins trap these GLUT4 storage vesicles at the Golgi matrix and in which insulin triggers endoproteolytic cleavage of TUG to translocate GLUT4. Here, we identify the muscle splice form of Usp25 (Usp25m) as a protease required for insulin-stimulated TUG cleavage and GLUT4 translocation in adipocytes. Usp25m is expressed in adipocytes, binds TUG and GLUT4, dissociates from TUG-bound vesicles after insulin addition, and colocalizes with TUG and insulin-responsive cargoes in unstimulated cells. Previous results show that TUG proteolysis generates the ubiquitin-like protein, TUGUL (for TUGubiquitin-like). We now show that TUGUL modifies the kinesin motor protein, KIF5B, and that TUG proteolysis is required to load GLUT4 onto these motors. Insulin stimulates TUG proteolytic processing independently of phosphatidylinositol 3-kinase. In nonadipocytes, TUG cleavage can be reconstituted by transfection of Usp25m, but not the related Usp25a isoform, together with other proteins present on GLUT4 vesicles. In rodents with diet-induced insulin resistance, TUG proteolysis and Usp25m protein abundance are reduced in adipose tissue. These effects occur soon after dietary manipulation, prior to the attenuation of insulin signaling to Akt. Together with previous data, these results support a model whereby insulin acts through Usp25m to mediate TUG cleavage, which liberates GLUT4 storage vesicles from the Golgi matrix and activates their microtubule-based movement to the plasma membrane. This TUG proteolytic pathway for insulin action is independent of Akt and is impaired by nutritional excess.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29773651</pmid><doi>10.1074/jbc.RA118.003021</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-6463-8466</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2018-07, Vol.293 (27), p.10466-10486 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6036200 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | adipocyte Adipocytes - cytology Adipocytes - drug effects Adipocytes - metabolism Animals Carrier Proteins - genetics Carrier Proteins - metabolism Cell Biology Cell Membrane - metabolism Cells, Cultured Glucose - metabolism glucose transporter type 4 (GLUT4) Glucose Transporter Type 4 - genetics Glucose Transporter Type 4 - metabolism Hypoglycemic Agents - pharmacology insulin Insulin - pharmacology insulin resistance Intracellular Signaling Peptides and Proteins kinesin Kinesin - genetics Kinesin - metabolism Male membrane trafficking Mice Mice, Inbred C57BL Motor Activity protein processing protein translocation Protein Transport Proteolysis Rats Rats, Sprague-Dawley Signal Transduction Ubiquitin - metabolism Ubiquitin Thiolesterase - genetics Ubiquitin Thiolesterase - metabolism ubiquitylation (ubiquitination) |
title | Usp25m protease regulates ubiquitin-like processing of TUG proteins to control GLUT4 glucose transporter translocation in adipocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Usp25m%20protease%20regulates%20ubiquitin-like%20processing%20of%20TUG%20proteins%20to%20control%20GLUT4%20glucose%20transporter%20translocation%20in%20adipocytes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Habtemichael,%20Estifanos%20N.&rft.date=2018-07-06&rft.volume=293&rft.issue=27&rft.spage=10466&rft.epage=10486&rft.pages=10466-10486&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA118.003021&rft_dat=%3Cproquest_pubme%3E2041632609%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041632609&rft_id=info:pmid/29773651&rft_els_id=S0021925820338059&rfr_iscdi=true |