Comparison of Antimicrobial Properties of Silver Nanoparticles Synthesized from Selected Bacteria

Green silver nanoparticle (AgNP) biosynthesis is facilitated by the enzyme mediated reduction of Ag ions by plants, fungi and bacteria. The antimicrobial activity of green AgNPs is useful to overcome the challenge of antimicrobial resistance. Antimicrobial properties of biosynthesized AgNPs depend o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of microbiology 2018-09, Vol.58 (3), p.301-311
Hauptverfasser: Peiris, M. M. K., Fernando, S. S. N., Jayaweera, P. M., Arachchi, N. D. H., Guansekara, T. D. C. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 3
container_start_page 301
container_title Indian journal of microbiology
container_volume 58
creator Peiris, M. M. K.
Fernando, S. S. N.
Jayaweera, P. M.
Arachchi, N. D. H.
Guansekara, T. D. C. P.
description Green silver nanoparticle (AgNP) biosynthesis is facilitated by the enzyme mediated reduction of Ag ions by plants, fungi and bacteria. The antimicrobial activity of green AgNPs is useful to overcome the challenge of antimicrobial resistance. Antimicrobial properties of biosynthesized AgNPs depend on multiple factors including culture conditions and the microbial source. The antimicrobial activity of AgNPs biosynthesized by Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Acinetobacter baumannii (confirmed clinical isolate) were investigated in this study. Biosynthesis conditions (AgNO 3 concentration, pH, incubation temperature and incubation time) were optimized to obtain the maximum AgNP yield. Presence of AgNPs was confirmed by observing a characteristic UV–Visible absorbance peak in 420–435 nm range. AgNP biosynthesis was optimal at 0.4 g/L AgNO 3 concentration under alkaline conditions at 60–70 °C. The biosynthesized AgNPs showed higher stability compared to chemogenized AgNPs in the presence of electrolytes. AgNPs synthesized by P. aeruginosa were the most stable while NPs of S. aureus were the least stable. AgNPs synthesized by P. aeruginosa and S. aureus showed good antimicrobial potential against E. coli, P. aeruginosa, S. aureus, MRSA and Candida albicans . AgNPs synthesized by S. aureus had greater antimicrobial activity. The antimicrobial activity of NPs may vary depending on the size and the morphology of NPs.
doi_str_mv 10.1007/s12088-018-0723-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6023817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022075818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-a45eb84f1e960faa178a1cec29ca665fdd70616a4e6822b5b4cf8d94fbf3b1153</originalsourceid><addsrcrecordid>eNqFkV1rFTEQhoMotlZ_gDey4I03q5lk87E3QnvwC4oKR69DNjtpU3aTY7KnUH-9WU6tHyBehMlknnmTzEvIU6AvgVL1qgCjWrcU6lKMt_weOaa94q1SIO7XPe1kq_sejsijUq4oFbKX4iE54pQCZ6o7JnaT5p3NoaTYJN-cxiXMweU0BDs1n3PaYV4ClrW2DdM15uajjal2LMFN9Xx7E5dLLOE7jo3PaW62OKFbanZma8jBPiYPvJ0KPrmNJ-Tr2zdfNu_b80_vPmxOz1snKF9a2wkcdOcBe0m9taC0BYeO9c5KKfw4KipB2g6lZmwQQ-e8HvvOD54PAIKfkNcH3d1-mHF0GJdsJ7PLYbb5xiQbzJ-VGC7NRbo2kjKuQVWBF7cCOX3bY1nMHIrDabIR074YBuvQpFbi_yitBshOslX1-V_oVdrnWCdRKVZBoUFXCg5UHX0pGf3du4Ga1Wtz8NpUr83qteG159nvH77r-GluBdgBKLUULzD_uvrfqj8AZ-m2IQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022075818</pqid></control><display><type>article</type><title>Comparison of Antimicrobial Properties of Silver Nanoparticles Synthesized from Selected Bacteria</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Peiris, M. M. K. ; Fernando, S. S. N. ; Jayaweera, P. M. ; Arachchi, N. D. H. ; Guansekara, T. D. C. P.</creator><creatorcontrib>Peiris, M. M. K. ; Fernando, S. S. N. ; Jayaweera, P. M. ; Arachchi, N. D. H. ; Guansekara, T. D. C. P.</creatorcontrib><description>Green silver nanoparticle (AgNP) biosynthesis is facilitated by the enzyme mediated reduction of Ag ions by plants, fungi and bacteria. The antimicrobial activity of green AgNPs is useful to overcome the challenge of antimicrobial resistance. Antimicrobial properties of biosynthesized AgNPs depend on multiple factors including culture conditions and the microbial source. The antimicrobial activity of AgNPs biosynthesized by Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Acinetobacter baumannii (confirmed clinical isolate) were investigated in this study. Biosynthesis conditions (AgNO 3 concentration, pH, incubation temperature and incubation time) were optimized to obtain the maximum AgNP yield. Presence of AgNPs was confirmed by observing a characteristic UV–Visible absorbance peak in 420–435 nm range. AgNP biosynthesis was optimal at 0.4 g/L AgNO 3 concentration under alkaline conditions at 60–70 °C. The biosynthesized AgNPs showed higher stability compared to chemogenized AgNPs in the presence of electrolytes. AgNPs synthesized by P. aeruginosa were the most stable while NPs of S. aureus were the least stable. AgNPs synthesized by P. aeruginosa and S. aureus showed good antimicrobial potential against E. coli, P. aeruginosa, S. aureus, MRSA and Candida albicans . AgNPs synthesized by S. aureus had greater antimicrobial activity. The antimicrobial activity of NPs may vary depending on the size and the morphology of NPs.</description><identifier>ISSN: 0046-8991</identifier><identifier>EISSN: 0973-7715</identifier><identifier>DOI: 10.1007/s12088-018-0723-3</identifier><identifier>PMID: 30013274</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>absorbance ; Acinetobacter baumannii ; antibiotic resistance ; Antiinfectives and antibacterials ; Antimicrobial activity ; Antimicrobial agents ; antimicrobial properties ; Antimicrobial resistance ; Bacteria ; Biomedical and Life Sciences ; Biosynthesis ; Candida albicans ; Drug resistance ; E coli ; Escherichia coli ; Fungi ; ions ; Life Sciences ; Medical Microbiology ; methicillin-resistant Staphylococcus aureus ; Microbiology ; Microorganisms ; Nanoparticles ; nanosilver ; Original ; Original Research Article ; Pathogens ; plants (botany) ; Pseudomonas aeruginosa ; Silver ; silver nitrate ; temperature</subject><ispartof>Indian journal of microbiology, 2018-09, Vol.58 (3), p.301-311</ispartof><rights>Association of Microbiologists of India 2018</rights><rights>Indian Journal of Microbiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-a45eb84f1e960faa178a1cec29ca665fdd70616a4e6822b5b4cf8d94fbf3b1153</citedby><cites>FETCH-LOGICAL-c503t-a45eb84f1e960faa178a1cec29ca665fdd70616a4e6822b5b4cf8d94fbf3b1153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023817/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023817/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,41467,42536,51297,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30013274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peiris, M. M. K.</creatorcontrib><creatorcontrib>Fernando, S. S. N.</creatorcontrib><creatorcontrib>Jayaweera, P. M.</creatorcontrib><creatorcontrib>Arachchi, N. D. H.</creatorcontrib><creatorcontrib>Guansekara, T. D. C. P.</creatorcontrib><title>Comparison of Antimicrobial Properties of Silver Nanoparticles Synthesized from Selected Bacteria</title><title>Indian journal of microbiology</title><addtitle>Indian J Microbiol</addtitle><addtitle>Indian J Microbiol</addtitle><description>Green silver nanoparticle (AgNP) biosynthesis is facilitated by the enzyme mediated reduction of Ag ions by plants, fungi and bacteria. The antimicrobial activity of green AgNPs is useful to overcome the challenge of antimicrobial resistance. Antimicrobial properties of biosynthesized AgNPs depend on multiple factors including culture conditions and the microbial source. The antimicrobial activity of AgNPs biosynthesized by Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Acinetobacter baumannii (confirmed clinical isolate) were investigated in this study. Biosynthesis conditions (AgNO 3 concentration, pH, incubation temperature and incubation time) were optimized to obtain the maximum AgNP yield. Presence of AgNPs was confirmed by observing a characteristic UV–Visible absorbance peak in 420–435 nm range. AgNP biosynthesis was optimal at 0.4 g/L AgNO 3 concentration under alkaline conditions at 60–70 °C. The biosynthesized AgNPs showed higher stability compared to chemogenized AgNPs in the presence of electrolytes. AgNPs synthesized by P. aeruginosa were the most stable while NPs of S. aureus were the least stable. AgNPs synthesized by P. aeruginosa and S. aureus showed good antimicrobial potential against E. coli, P. aeruginosa, S. aureus, MRSA and Candida albicans . AgNPs synthesized by S. aureus had greater antimicrobial activity. The antimicrobial activity of NPs may vary depending on the size and the morphology of NPs.</description><subject>absorbance</subject><subject>Acinetobacter baumannii</subject><subject>antibiotic resistance</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>antimicrobial properties</subject><subject>Antimicrobial resistance</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Candida albicans</subject><subject>Drug resistance</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Fungi</subject><subject>ions</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>methicillin-resistant Staphylococcus aureus</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Nanoparticles</subject><subject>nanosilver</subject><subject>Original</subject><subject>Original Research Article</subject><subject>Pathogens</subject><subject>plants (botany)</subject><subject>Pseudomonas aeruginosa</subject><subject>Silver</subject><subject>silver nitrate</subject><subject>temperature</subject><issn>0046-8991</issn><issn>0973-7715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkV1rFTEQhoMotlZ_gDey4I03q5lk87E3QnvwC4oKR69DNjtpU3aTY7KnUH-9WU6tHyBehMlknnmTzEvIU6AvgVL1qgCjWrcU6lKMt_weOaa94q1SIO7XPe1kq_sejsijUq4oFbKX4iE54pQCZ6o7JnaT5p3NoaTYJN-cxiXMweU0BDs1n3PaYV4ClrW2DdM15uajjal2LMFN9Xx7E5dLLOE7jo3PaW62OKFbanZma8jBPiYPvJ0KPrmNJ-Tr2zdfNu_b80_vPmxOz1snKF9a2wkcdOcBe0m9taC0BYeO9c5KKfw4KipB2g6lZmwQQ-e8HvvOD54PAIKfkNcH3d1-mHF0GJdsJ7PLYbb5xiQbzJ-VGC7NRbo2kjKuQVWBF7cCOX3bY1nMHIrDabIR074YBuvQpFbi_yitBshOslX1-V_oVdrnWCdRKVZBoUFXCg5UHX0pGf3du4Ga1Wtz8NpUr83qteG159nvH77r-GluBdgBKLUULzD_uvrfqj8AZ-m2IQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Peiris, M. M. K.</creator><creator>Fernando, S. S. N.</creator><creator>Jayaweera, P. M.</creator><creator>Arachchi, N. D. H.</creator><creator>Guansekara, T. D. C. P.</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20180901</creationdate><title>Comparison of Antimicrobial Properties of Silver Nanoparticles Synthesized from Selected Bacteria</title><author>Peiris, M. M. K. ; Fernando, S. S. N. ; Jayaweera, P. M. ; Arachchi, N. D. H. ; Guansekara, T. D. C. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-a45eb84f1e960faa178a1cec29ca665fdd70616a4e6822b5b4cf8d94fbf3b1153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>absorbance</topic><topic>Acinetobacter baumannii</topic><topic>antibiotic resistance</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>antimicrobial properties</topic><topic>Antimicrobial resistance</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Candida albicans</topic><topic>Drug resistance</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Fungi</topic><topic>ions</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>methicillin-resistant Staphylococcus aureus</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Nanoparticles</topic><topic>nanosilver</topic><topic>Original</topic><topic>Original Research Article</topic><topic>Pathogens</topic><topic>plants (botany)</topic><topic>Pseudomonas aeruginosa</topic><topic>Silver</topic><topic>silver nitrate</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peiris, M. M. K.</creatorcontrib><creatorcontrib>Fernando, S. S. N.</creatorcontrib><creatorcontrib>Jayaweera, P. M.</creatorcontrib><creatorcontrib>Arachchi, N. D. H.</creatorcontrib><creatorcontrib>Guansekara, T. D. C. P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Indian journal of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peiris, M. M. K.</au><au>Fernando, S. S. N.</au><au>Jayaweera, P. M.</au><au>Arachchi, N. D. H.</au><au>Guansekara, T. D. C. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Antimicrobial Properties of Silver Nanoparticles Synthesized from Selected Bacteria</atitle><jtitle>Indian journal of microbiology</jtitle><stitle>Indian J Microbiol</stitle><addtitle>Indian J Microbiol</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>58</volume><issue>3</issue><spage>301</spage><epage>311</epage><pages>301-311</pages><issn>0046-8991</issn><eissn>0973-7715</eissn><abstract>Green silver nanoparticle (AgNP) biosynthesis is facilitated by the enzyme mediated reduction of Ag ions by plants, fungi and bacteria. The antimicrobial activity of green AgNPs is useful to overcome the challenge of antimicrobial resistance. Antimicrobial properties of biosynthesized AgNPs depend on multiple factors including culture conditions and the microbial source. The antimicrobial activity of AgNPs biosynthesized by Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Acinetobacter baumannii (confirmed clinical isolate) were investigated in this study. Biosynthesis conditions (AgNO 3 concentration, pH, incubation temperature and incubation time) were optimized to obtain the maximum AgNP yield. Presence of AgNPs was confirmed by observing a characteristic UV–Visible absorbance peak in 420–435 nm range. AgNP biosynthesis was optimal at 0.4 g/L AgNO 3 concentration under alkaline conditions at 60–70 °C. The biosynthesized AgNPs showed higher stability compared to chemogenized AgNPs in the presence of electrolytes. AgNPs synthesized by P. aeruginosa were the most stable while NPs of S. aureus were the least stable. AgNPs synthesized by P. aeruginosa and S. aureus showed good antimicrobial potential against E. coli, P. aeruginosa, S. aureus, MRSA and Candida albicans . AgNPs synthesized by S. aureus had greater antimicrobial activity. The antimicrobial activity of NPs may vary depending on the size and the morphology of NPs.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>30013274</pmid><doi>10.1007/s12088-018-0723-3</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-8991
ispartof Indian journal of microbiology, 2018-09, Vol.58 (3), p.301-311
issn 0046-8991
0973-7715
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6023817
source SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects absorbance
Acinetobacter baumannii
antibiotic resistance
Antiinfectives and antibacterials
Antimicrobial activity
Antimicrobial agents
antimicrobial properties
Antimicrobial resistance
Bacteria
Biomedical and Life Sciences
Biosynthesis
Candida albicans
Drug resistance
E coli
Escherichia coli
Fungi
ions
Life Sciences
Medical Microbiology
methicillin-resistant Staphylococcus aureus
Microbiology
Microorganisms
Nanoparticles
nanosilver
Original
Original Research Article
Pathogens
plants (botany)
Pseudomonas aeruginosa
Silver
silver nitrate
temperature
title Comparison of Antimicrobial Properties of Silver Nanoparticles Synthesized from Selected Bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Antimicrobial%20Properties%20of%20Silver%20Nanoparticles%20Synthesized%20from%20Selected%20Bacteria&rft.jtitle=Indian%20journal%20of%20microbiology&rft.au=Peiris,%20M.%20M.%20K.&rft.date=2018-09-01&rft.volume=58&rft.issue=3&rft.spage=301&rft.epage=311&rft.pages=301-311&rft.issn=0046-8991&rft.eissn=0973-7715&rft_id=info:doi/10.1007/s12088-018-0723-3&rft_dat=%3Cproquest_pubme%3E2022075818%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022075818&rft_id=info:pmid/30013274&rfr_iscdi=true