Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury
See Peterson and Benowitz (doi:10.1093/brain/awy165) for a scientific commentary on this article. Dendrites retract and disconnect from their cellular partners in a number of psychiatric and neurodegenerative diseases. Agostinone et al. show that injured mammalian retinal ganglion cells have the cap...
Gespeichert in:
Veröffentlicht in: | Brain (London, England : 1878) England : 1878), 2018-07, Vol.141 (7), p.1963-1980 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1980 |
---|---|
container_issue | 7 |
container_start_page | 1963 |
container_title | Brain (London, England : 1878) |
container_volume | 141 |
creator | Agostinone, Jessica Alarcon-Martinez, Luis Gamlin, Clare Yu, Wan-Qing Wong, Rachel O L Di Polo, Adriana |
description | See Peterson and Benowitz (doi:10.1093/brain/awy165) for a scientific commentary on this article.
Dendrites retract and disconnect from their cellular partners in a number of psychiatric and neurodegenerative diseases. Agostinone et al. show that injured mammalian retinal ganglion cells have the capacity to regenerate dendrites and reestablish functional connections, and identify insulin signalling as paramount for a successful pro-regenerative response.
Abstract
Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma. |
doi_str_mv | 10.1093/brain/awy142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6022605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/brain/awy142</oup_id><sourcerecordid>2058505866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-c36de680b5f1941baf05ffd7f9a11e0001a24d74463d2dff3e61a8810e665763</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxa2qqLssvfWMfCsHAmMn9iYXJIT4WAmJC3fLG4-3Rlk72Ant_vcYQlf00sN4LL2n38zoEfKDwRmDpjxfR-38uf69YxX_QuasklBwJuRXMgcAWdSNgBk5TOkJgFUll9_IjDdNyUAs5ySsfBo752lyG6-7_NvQPoZtGDBRg95ENyDV3tC087pPSCNu0GPUgwv-XYiYhpAf2rrYjm6gdvTtpNoBI9V_QiZT55_GuDsiB1Z3Cb9_9AV5vLl-vLor7h9uV1eX90VbiWYo2lIalDWshWVNxdbagrDWLG2jGcN8F9O8MsuqkqXhxtoSJdN1zQClFEtZLsjFhO3H9RZNi36IulN9dFsddypop_5VvPulNuFFSeBcgsiAkw9ADM9jvlBtXWqx67THMCbFQdQil3ybdTpZ2xhSimj3Yxiot4jUe0Rqiijbjz-vtjf_zSQbfk6GMPb_R70CR3egGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058505866</pqid></control><display><type>article</type><title>Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Agostinone, Jessica ; Alarcon-Martinez, Luis ; Gamlin, Clare ; Yu, Wan-Qing ; Wong, Rachel O L ; Di Polo, Adriana</creator><creatorcontrib>Agostinone, Jessica ; Alarcon-Martinez, Luis ; Gamlin, Clare ; Yu, Wan-Qing ; Wong, Rachel O L ; Di Polo, Adriana</creatorcontrib><description>See Peterson and Benowitz (doi:10.1093/brain/awy165) for a scientific commentary on this article.
Dendrites retract and disconnect from their cellular partners in a number of psychiatric and neurodegenerative diseases. Agostinone et al. show that injured mammalian retinal ganglion cells have the capacity to regenerate dendrites and reestablish functional connections, and identify insulin signalling as paramount for a successful pro-regenerative response.
Abstract
Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awy142</identifier><identifier>PMID: 29931057</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Axons - metabolism ; Central Nervous System - metabolism ; Dendrites - drug effects ; Dendrites - metabolism ; Dendrites - physiology ; Glaucoma ; Insulin - physiology ; Insulin - therapeutic use ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Mice ; Nerve Regeneration - drug effects ; Nerve Regeneration - physiology ; Optic Nerve - cytology ; Optic Nerve Injuries - drug therapy ; Original ; Retina - injuries ; Retinal Ganglion Cells - cytology ; Signal Transduction ; Synapses - drug effects ; Synapses - pathology ; Synapses - physiology ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Brain (London, England : 1878), 2018-07, Vol.141 (7), p.1963-1980</ispartof><rights>The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-c36de680b5f1941baf05ffd7f9a11e0001a24d74463d2dff3e61a8810e665763</citedby><cites>FETCH-LOGICAL-c459t-c36de680b5f1941baf05ffd7f9a11e0001a24d74463d2dff3e61a8810e665763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29931057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agostinone, Jessica</creatorcontrib><creatorcontrib>Alarcon-Martinez, Luis</creatorcontrib><creatorcontrib>Gamlin, Clare</creatorcontrib><creatorcontrib>Yu, Wan-Qing</creatorcontrib><creatorcontrib>Wong, Rachel O L</creatorcontrib><creatorcontrib>Di Polo, Adriana</creatorcontrib><title>Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>See Peterson and Benowitz (doi:10.1093/brain/awy165) for a scientific commentary on this article.
Dendrites retract and disconnect from their cellular partners in a number of psychiatric and neurodegenerative diseases. Agostinone et al. show that injured mammalian retinal ganglion cells have the capacity to regenerate dendrites and reestablish functional connections, and identify insulin signalling as paramount for a successful pro-regenerative response.
Abstract
Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Central Nervous System - metabolism</subject><subject>Dendrites - drug effects</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - physiology</subject><subject>Glaucoma</subject><subject>Insulin - physiology</subject><subject>Insulin - therapeutic use</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Mice</subject><subject>Nerve Regeneration - drug effects</subject><subject>Nerve Regeneration - physiology</subject><subject>Optic Nerve - cytology</subject><subject>Optic Nerve Injuries - drug therapy</subject><subject>Original</subject><subject>Retina - injuries</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Signal Transduction</subject><subject>Synapses - drug effects</subject><subject>Synapses - pathology</subject><subject>Synapses - physiology</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1P3DAQxa2qqLssvfWMfCsHAmMn9iYXJIT4WAmJC3fLG4-3Rlk72Ant_vcYQlf00sN4LL2n38zoEfKDwRmDpjxfR-38uf69YxX_QuasklBwJuRXMgcAWdSNgBk5TOkJgFUll9_IjDdNyUAs5ySsfBo752lyG6-7_NvQPoZtGDBRg95ENyDV3tC087pPSCNu0GPUgwv-XYiYhpAf2rrYjm6gdvTtpNoBI9V_QiZT55_GuDsiB1Z3Cb9_9AV5vLl-vLor7h9uV1eX90VbiWYo2lIalDWshWVNxdbagrDWLG2jGcN8F9O8MsuqkqXhxtoSJdN1zQClFEtZLsjFhO3H9RZNi36IulN9dFsddypop_5VvPulNuFFSeBcgsiAkw9ADM9jvlBtXWqx67THMCbFQdQil3ybdTpZ2xhSimj3Yxiot4jUe0Rqiijbjz-vtjf_zSQbfk6GMPb_R70CR3egGQ</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Agostinone, Jessica</creator><creator>Alarcon-Martinez, Luis</creator><creator>Gamlin, Clare</creator><creator>Yu, Wan-Qing</creator><creator>Wong, Rachel O L</creator><creator>Di Polo, Adriana</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180701</creationdate><title>Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury</title><author>Agostinone, Jessica ; Alarcon-Martinez, Luis ; Gamlin, Clare ; Yu, Wan-Qing ; Wong, Rachel O L ; Di Polo, Adriana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-c36de680b5f1941baf05ffd7f9a11e0001a24d74463d2dff3e61a8810e665763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Central Nervous System - metabolism</topic><topic>Dendrites - drug effects</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - physiology</topic><topic>Glaucoma</topic><topic>Insulin - physiology</topic><topic>Insulin - therapeutic use</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Mice</topic><topic>Nerve Regeneration - drug effects</topic><topic>Nerve Regeneration - physiology</topic><topic>Optic Nerve - cytology</topic><topic>Optic Nerve Injuries - drug therapy</topic><topic>Original</topic><topic>Retina - injuries</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Signal Transduction</topic><topic>Synapses - drug effects</topic><topic>Synapses - pathology</topic><topic>Synapses - physiology</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agostinone, Jessica</creatorcontrib><creatorcontrib>Alarcon-Martinez, Luis</creatorcontrib><creatorcontrib>Gamlin, Clare</creatorcontrib><creatorcontrib>Yu, Wan-Qing</creatorcontrib><creatorcontrib>Wong, Rachel O L</creatorcontrib><creatorcontrib>Di Polo, Adriana</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agostinone, Jessica</au><au>Alarcon-Martinez, Luis</au><au>Gamlin, Clare</au><au>Yu, Wan-Qing</au><au>Wong, Rachel O L</au><au>Di Polo, Adriana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>141</volume><issue>7</issue><spage>1963</spage><epage>1980</epage><pages>1963-1980</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>See Peterson and Benowitz (doi:10.1093/brain/awy165) for a scientific commentary on this article.
Dendrites retract and disconnect from their cellular partners in a number of psychiatric and neurodegenerative diseases. Agostinone et al. show that injured mammalian retinal ganglion cells have the capacity to regenerate dendrites and reestablish functional connections, and identify insulin signalling as paramount for a successful pro-regenerative response.
Abstract
Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29931057</pmid><doi>10.1093/brain/awy142</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8950 |
ispartof | Brain (London, England : 1878), 2018-07, Vol.141 (7), p.1963-1980 |
issn | 0006-8950 1460-2156 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6022605 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Axons - metabolism Central Nervous System - metabolism Dendrites - drug effects Dendrites - metabolism Dendrites - physiology Glaucoma Insulin - physiology Insulin - therapeutic use Mechanistic Target of Rapamycin Complex 1 - metabolism Mechanistic Target of Rapamycin Complex 2 - metabolism Mice Nerve Regeneration - drug effects Nerve Regeneration - physiology Optic Nerve - cytology Optic Nerve Injuries - drug therapy Original Retina - injuries Retinal Ganglion Cells - cytology Signal Transduction Synapses - drug effects Synapses - pathology Synapses - physiology TOR Serine-Threonine Kinases - metabolism |
title | Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20signalling%20promotes%20dendrite%20and%20synapse%20regeneration%20and%20restores%20circuit%20function%20after%20axonal%20injury&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Agostinone,%20Jessica&rft.date=2018-07-01&rft.volume=141&rft.issue=7&rft.spage=1963&rft.epage=1980&rft.pages=1963-1980&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awy142&rft_dat=%3Cproquest_pubme%3E2058505866%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058505866&rft_id=info:pmid/29931057&rft_oup_id=10.1093/brain/awy142&rfr_iscdi=true |