Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury

See Peterson and Benowitz (doi:10.1093/brain/awy165) for a scientific commentary on this article. Dendrites retract and disconnect from their cellular partners in a number of psychiatric and neurodegenerative diseases. Agostinone et al. show that injured mammalian retinal ganglion cells have the cap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 2018-07, Vol.141 (7), p.1963-1980
Hauptverfasser: Agostinone, Jessica, Alarcon-Martinez, Luis, Gamlin, Clare, Yu, Wan-Qing, Wong, Rachel O L, Di Polo, Adriana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1980
container_issue 7
container_start_page 1963
container_title Brain (London, England : 1878)
container_volume 141
creator Agostinone, Jessica
Alarcon-Martinez, Luis
Gamlin, Clare
Yu, Wan-Qing
Wong, Rachel O L
Di Polo, Adriana
description See Peterson and Benowitz (doi:10.1093/brain/awy165) for a scientific commentary on this article. Dendrites retract and disconnect from their cellular partners in a number of psychiatric and neurodegenerative diseases. Agostinone et al. show that injured mammalian retinal ganglion cells have the capacity to regenerate dendrites and reestablish functional connections, and identify insulin signalling as paramount for a successful pro-regenerative response. Abstract Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.
doi_str_mv 10.1093/brain/awy142
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6022605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/brain/awy142</oup_id><sourcerecordid>2058505866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-c36de680b5f1941baf05ffd7f9a11e0001a24d74463d2dff3e61a8810e665763</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxa2qqLssvfWMfCsHAmMn9iYXJIT4WAmJC3fLG4-3Rlk72Ant_vcYQlf00sN4LL2n38zoEfKDwRmDpjxfR-38uf69YxX_QuasklBwJuRXMgcAWdSNgBk5TOkJgFUll9_IjDdNyUAs5ySsfBo752lyG6-7_NvQPoZtGDBRg95ENyDV3tC087pPSCNu0GPUgwv-XYiYhpAf2rrYjm6gdvTtpNoBI9V_QiZT55_GuDsiB1Z3Cb9_9AV5vLl-vLor7h9uV1eX90VbiWYo2lIalDWshWVNxdbagrDWLG2jGcN8F9O8MsuqkqXhxtoSJdN1zQClFEtZLsjFhO3H9RZNi36IulN9dFsddypop_5VvPulNuFFSeBcgsiAkw9ADM9jvlBtXWqx67THMCbFQdQil3ybdTpZ2xhSimj3Yxiot4jUe0Rqiijbjz-vtjf_zSQbfk6GMPb_R70CR3egGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2058505866</pqid></control><display><type>article</type><title>Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Agostinone, Jessica ; Alarcon-Martinez, Luis ; Gamlin, Clare ; Yu, Wan-Qing ; Wong, Rachel O L ; Di Polo, Adriana</creator><creatorcontrib>Agostinone, Jessica ; Alarcon-Martinez, Luis ; Gamlin, Clare ; Yu, Wan-Qing ; Wong, Rachel O L ; Di Polo, Adriana</creatorcontrib><description>See Peterson and Benowitz (doi:10.1093/brain/awy165) for a scientific commentary on this article. Dendrites retract and disconnect from their cellular partners in a number of psychiatric and neurodegenerative diseases. Agostinone et al. show that injured mammalian retinal ganglion cells have the capacity to regenerate dendrites and reestablish functional connections, and identify insulin signalling as paramount for a successful pro-regenerative response. Abstract Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awy142</identifier><identifier>PMID: 29931057</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Axons - metabolism ; Central Nervous System - metabolism ; Dendrites - drug effects ; Dendrites - metabolism ; Dendrites - physiology ; Glaucoma ; Insulin - physiology ; Insulin - therapeutic use ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Mice ; Nerve Regeneration - drug effects ; Nerve Regeneration - physiology ; Optic Nerve - cytology ; Optic Nerve Injuries - drug therapy ; Original ; Retina - injuries ; Retinal Ganglion Cells - cytology ; Signal Transduction ; Synapses - drug effects ; Synapses - pathology ; Synapses - physiology ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Brain (London, England : 1878), 2018-07, Vol.141 (7), p.1963-1980</ispartof><rights>The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-c36de680b5f1941baf05ffd7f9a11e0001a24d74463d2dff3e61a8810e665763</citedby><cites>FETCH-LOGICAL-c459t-c36de680b5f1941baf05ffd7f9a11e0001a24d74463d2dff3e61a8810e665763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29931057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agostinone, Jessica</creatorcontrib><creatorcontrib>Alarcon-Martinez, Luis</creatorcontrib><creatorcontrib>Gamlin, Clare</creatorcontrib><creatorcontrib>Yu, Wan-Qing</creatorcontrib><creatorcontrib>Wong, Rachel O L</creatorcontrib><creatorcontrib>Di Polo, Adriana</creatorcontrib><title>Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>See Peterson and Benowitz (doi:10.1093/brain/awy165) for a scientific commentary on this article. Dendrites retract and disconnect from their cellular partners in a number of psychiatric and neurodegenerative diseases. Agostinone et al. show that injured mammalian retinal ganglion cells have the capacity to regenerate dendrites and reestablish functional connections, and identify insulin signalling as paramount for a successful pro-regenerative response. Abstract Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.</description><subject>Animals</subject><subject>Axons - metabolism</subject><subject>Central Nervous System - metabolism</subject><subject>Dendrites - drug effects</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - physiology</subject><subject>Glaucoma</subject><subject>Insulin - physiology</subject><subject>Insulin - therapeutic use</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Mice</subject><subject>Nerve Regeneration - drug effects</subject><subject>Nerve Regeneration - physiology</subject><subject>Optic Nerve - cytology</subject><subject>Optic Nerve Injuries - drug therapy</subject><subject>Original</subject><subject>Retina - injuries</subject><subject>Retinal Ganglion Cells - cytology</subject><subject>Signal Transduction</subject><subject>Synapses - drug effects</subject><subject>Synapses - pathology</subject><subject>Synapses - physiology</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1P3DAQxa2qqLssvfWMfCsHAmMn9iYXJIT4WAmJC3fLG4-3Rlk72Ant_vcYQlf00sN4LL2n38zoEfKDwRmDpjxfR-38uf69YxX_QuasklBwJuRXMgcAWdSNgBk5TOkJgFUll9_IjDdNyUAs5ySsfBo752lyG6-7_NvQPoZtGDBRg95ENyDV3tC087pPSCNu0GPUgwv-XYiYhpAf2rrYjm6gdvTtpNoBI9V_QiZT55_GuDsiB1Z3Cb9_9AV5vLl-vLor7h9uV1eX90VbiWYo2lIalDWshWVNxdbagrDWLG2jGcN8F9O8MsuqkqXhxtoSJdN1zQClFEtZLsjFhO3H9RZNi36IulN9dFsddypop_5VvPulNuFFSeBcgsiAkw9ADM9jvlBtXWqx67THMCbFQdQil3ybdTpZ2xhSimj3Yxiot4jUe0Rqiijbjz-vtjf_zSQbfk6GMPb_R70CR3egGQ</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Agostinone, Jessica</creator><creator>Alarcon-Martinez, Luis</creator><creator>Gamlin, Clare</creator><creator>Yu, Wan-Qing</creator><creator>Wong, Rachel O L</creator><creator>Di Polo, Adriana</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180701</creationdate><title>Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury</title><author>Agostinone, Jessica ; Alarcon-Martinez, Luis ; Gamlin, Clare ; Yu, Wan-Qing ; Wong, Rachel O L ; Di Polo, Adriana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-c36de680b5f1941baf05ffd7f9a11e0001a24d74463d2dff3e61a8810e665763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Axons - metabolism</topic><topic>Central Nervous System - metabolism</topic><topic>Dendrites - drug effects</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - physiology</topic><topic>Glaucoma</topic><topic>Insulin - physiology</topic><topic>Insulin - therapeutic use</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Mice</topic><topic>Nerve Regeneration - drug effects</topic><topic>Nerve Regeneration - physiology</topic><topic>Optic Nerve - cytology</topic><topic>Optic Nerve Injuries - drug therapy</topic><topic>Original</topic><topic>Retina - injuries</topic><topic>Retinal Ganglion Cells - cytology</topic><topic>Signal Transduction</topic><topic>Synapses - drug effects</topic><topic>Synapses - pathology</topic><topic>Synapses - physiology</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agostinone, Jessica</creatorcontrib><creatorcontrib>Alarcon-Martinez, Luis</creatorcontrib><creatorcontrib>Gamlin, Clare</creatorcontrib><creatorcontrib>Yu, Wan-Qing</creatorcontrib><creatorcontrib>Wong, Rachel O L</creatorcontrib><creatorcontrib>Di Polo, Adriana</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agostinone, Jessica</au><au>Alarcon-Martinez, Luis</au><au>Gamlin, Clare</au><au>Yu, Wan-Qing</au><au>Wong, Rachel O L</au><au>Di Polo, Adriana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>141</volume><issue>7</issue><spage>1963</spage><epage>1980</epage><pages>1963-1980</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>See Peterson and Benowitz (doi:10.1093/brain/awy165) for a scientific commentary on this article. Dendrites retract and disconnect from their cellular partners in a number of psychiatric and neurodegenerative diseases. Agostinone et al. show that injured mammalian retinal ganglion cells have the capacity to regenerate dendrites and reestablish functional connections, and identify insulin signalling as paramount for a successful pro-regenerative response. Abstract Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29931057</pmid><doi>10.1093/brain/awy142</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-8950
ispartof Brain (London, England : 1878), 2018-07, Vol.141 (7), p.1963-1980
issn 0006-8950
1460-2156
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6022605
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Axons - metabolism
Central Nervous System - metabolism
Dendrites - drug effects
Dendrites - metabolism
Dendrites - physiology
Glaucoma
Insulin - physiology
Insulin - therapeutic use
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mechanistic Target of Rapamycin Complex 2 - metabolism
Mice
Nerve Regeneration - drug effects
Nerve Regeneration - physiology
Optic Nerve - cytology
Optic Nerve Injuries - drug therapy
Original
Retina - injuries
Retinal Ganglion Cells - cytology
Signal Transduction
Synapses - drug effects
Synapses - pathology
Synapses - physiology
TOR Serine-Threonine Kinases - metabolism
title Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20signalling%20promotes%20dendrite%20and%20synapse%20regeneration%20and%20restores%20circuit%20function%20after%20axonal%20injury&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Agostinone,%20Jessica&rft.date=2018-07-01&rft.volume=141&rft.issue=7&rft.spage=1963&rft.epage=1980&rft.pages=1963-1980&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awy142&rft_dat=%3Cproquest_pubme%3E2058505866%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2058505866&rft_id=info:pmid/29931057&rft_oup_id=10.1093/brain/awy142&rfr_iscdi=true