Feasibility and implementation of CYP2C19 genotyping in patients using antiplatelet therapy

A tailored antiplatelet strategy based on CYP2C19 genotype may reduce atherothrombotic and bleeding events. We describe our experience with CYP2C19 genotyping, using on-site TaqMan or Spartan genotyping or shipment to a central laboratory. Data from two ongoing projects were used: Popular Risk Score...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacogenomics 2018-05, Vol.19 (7), p.621-628
Hauptverfasser: Bergmeijer, Thomas O, Vos, Gerrit Ja, Claassens, Daniël Mf, Janssen, Paul Wa, Harms, Remko, der Heide, Richard van, Asselbergs, Folkert W, Ten Berg, Jurriën M, Deneer, Vera Hm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 628
container_issue 7
container_start_page 621
container_title Pharmacogenomics
container_volume 19
creator Bergmeijer, Thomas O
Vos, Gerrit Ja
Claassens, Daniël Mf
Janssen, Paul Wa
Harms, Remko
der Heide, Richard van
Asselbergs, Folkert W
Ten Berg, Jurriën M
Deneer, Vera Hm
description A tailored antiplatelet strategy based on CYP2C19 genotype may reduce atherothrombotic and bleeding events. We describe our experience with CYP2C19 genotyping, using on-site TaqMan or Spartan genotyping or shipment to a central laboratory. Data from two ongoing projects were used: Popular Risk Score project (non-urgent percutaneous coronary intervention patients) and the Popular Genetics study (ST-segment elevation myocardial infarction patients). For both projects, the time to genotyping result was calculated. In the Popular Risk Score project (n = 2556), median time from blood collection to genotyping result was 4:04 h. In the Popular Genetics study (n = 1038), median time from randomization to genotyping result was 2:24 h. CYP2C19 genotyping is feasible in everyday clinical practice, both in the acute and non-acute settings.
doi_str_mv 10.2217/pgs-2018-0013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6021912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2032431386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-7c69111d4304d039aca6e2b3c46bba4f4cc802cd0761dd6ebff866bc0d51047b3</originalsourceid><addsrcrecordid>eNpdkcFrFTEQh0OxtLX16FUCXrysnZnkZXcvgjysCoX2oIfiIWSz2deU3WTdZIX335tHa1FPE2Y-fszkY-w1wnsirC_nXaoIsKkAUByxM6ylrBqQ9KK8paKKJKpT9jKlBwBCJeGEnVJbAyK1Z-zHlTPJd370ec9N6Lmf5tFNLmSTfQw8Dnx7d0tbbPnOhZj3sw877gOfy7xQia_p0DEh-3k02Y0u83zvFjPvL9jxYMbkXj3Vc_b96tO37Zfq-ubz1-3H68pK3OSqtqpFxF4KkD2I1lijHHXCStV1Rg7S2gbI9lAr7HvlumFolOos9BsEWXfinH14zJ3XbnK9LWstZtTz4iez7HU0Xv87Cf5e7-IvrcqHtEgl4N1TwBJ_ri5lPflk3Tia4OKaNIEgKVA0qqBv_0Mf4rqEcp4mQaqVm1q1haoeKbvElBY3PC-DoA_adNGmD9r0QVvh3_x9wTP9x5P4DX5IlLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2326945769</pqid></control><display><type>article</type><title>Feasibility and implementation of CYP2C19 genotyping in patients using antiplatelet therapy</title><source>MEDLINE</source><source>PubMed Central</source><creator>Bergmeijer, Thomas O ; Vos, Gerrit Ja ; Claassens, Daniël Mf ; Janssen, Paul Wa ; Harms, Remko ; der Heide, Richard van ; Asselbergs, Folkert W ; Ten Berg, Jurriën M ; Deneer, Vera Hm</creator><creatorcontrib>Bergmeijer, Thomas O ; Vos, Gerrit Ja ; Claassens, Daniël Mf ; Janssen, Paul Wa ; Harms, Remko ; der Heide, Richard van ; Asselbergs, Folkert W ; Ten Berg, Jurriën M ; Deneer, Vera Hm</creatorcontrib><description>A tailored antiplatelet strategy based on CYP2C19 genotype may reduce atherothrombotic and bleeding events. We describe our experience with CYP2C19 genotyping, using on-site TaqMan or Spartan genotyping or shipment to a central laboratory. Data from two ongoing projects were used: Popular Risk Score project (non-urgent percutaneous coronary intervention patients) and the Popular Genetics study (ST-segment elevation myocardial infarction patients). For both projects, the time to genotyping result was calculated. In the Popular Risk Score project (n = 2556), median time from blood collection to genotyping result was 4:04 h. In the Popular Genetics study (n = 1038), median time from randomization to genotyping result was 2:24 h. CYP2C19 genotyping is feasible in everyday clinical practice, both in the acute and non-acute settings.</description><identifier>ISSN: 1462-2416</identifier><identifier>EISSN: 1744-8042</identifier><identifier>DOI: 10.2217/pgs-2018-0013</identifier><identifier>PMID: 29701129</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>Acute coronary syndromes ; Angioplasty ; Blood platelets ; Cardiology ; Consortia ; Customization ; Cytochrome ; Cytochrome P-450 CYP2C19 - genetics ; Drug dosages ; Drug-Related Side Effects and Adverse Reactions - etiology ; Drug-Related Side Effects and Adverse Reactions - genetics ; Drug-Related Side Effects and Adverse Reactions - prevention &amp; control ; Feasibility Studies ; Genetics ; Genotype ; Genotype &amp; phenotype ; Genotypes ; Genotyping ; Heart attacks ; Humans ; Intervention ; Laboratories ; Metabolism ; Metabolites ; Myocardial infarction ; Myocardial Infarction - drug therapy ; Myocardial Infarction - genetics ; Patients ; Percutaneous Coronary Intervention - methods ; Pharmacogenomic Testing - methods ; Platelet Aggregation Inhibitors - administration &amp; dosage ; Platelet Aggregation Inhibitors - adverse effects ; Precision Medicine - methods ; Time Factors</subject><ispartof>Pharmacogenomics, 2018-05, Vol.19 (7), p.621-628</ispartof><rights>Copyright Future Medicine Ltd May 2018</rights><rights>2018 Future Medicine Ltd 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-7c69111d4304d039aca6e2b3c46bba4f4cc802cd0761dd6ebff866bc0d51047b3</citedby><cites>FETCH-LOGICAL-c415t-7c69111d4304d039aca6e2b3c46bba4f4cc802cd0761dd6ebff866bc0d51047b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021912/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021912/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29701129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergmeijer, Thomas O</creatorcontrib><creatorcontrib>Vos, Gerrit Ja</creatorcontrib><creatorcontrib>Claassens, Daniël Mf</creatorcontrib><creatorcontrib>Janssen, Paul Wa</creatorcontrib><creatorcontrib>Harms, Remko</creatorcontrib><creatorcontrib>der Heide, Richard van</creatorcontrib><creatorcontrib>Asselbergs, Folkert W</creatorcontrib><creatorcontrib>Ten Berg, Jurriën M</creatorcontrib><creatorcontrib>Deneer, Vera Hm</creatorcontrib><title>Feasibility and implementation of CYP2C19 genotyping in patients using antiplatelet therapy</title><title>Pharmacogenomics</title><addtitle>Pharmacogenomics</addtitle><description>A tailored antiplatelet strategy based on CYP2C19 genotype may reduce atherothrombotic and bleeding events. We describe our experience with CYP2C19 genotyping, using on-site TaqMan or Spartan genotyping or shipment to a central laboratory. Data from two ongoing projects were used: Popular Risk Score project (non-urgent percutaneous coronary intervention patients) and the Popular Genetics study (ST-segment elevation myocardial infarction patients). For both projects, the time to genotyping result was calculated. In the Popular Risk Score project (n = 2556), median time from blood collection to genotyping result was 4:04 h. In the Popular Genetics study (n = 1038), median time from randomization to genotyping result was 2:24 h. CYP2C19 genotyping is feasible in everyday clinical practice, both in the acute and non-acute settings.</description><subject>Acute coronary syndromes</subject><subject>Angioplasty</subject><subject>Blood platelets</subject><subject>Cardiology</subject><subject>Consortia</subject><subject>Customization</subject><subject>Cytochrome</subject><subject>Cytochrome P-450 CYP2C19 - genetics</subject><subject>Drug dosages</subject><subject>Drug-Related Side Effects and Adverse Reactions - etiology</subject><subject>Drug-Related Side Effects and Adverse Reactions - genetics</subject><subject>Drug-Related Side Effects and Adverse Reactions - prevention &amp; control</subject><subject>Feasibility Studies</subject><subject>Genetics</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>Heart attacks</subject><subject>Humans</subject><subject>Intervention</subject><subject>Laboratories</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Myocardial infarction</subject><subject>Myocardial Infarction - drug therapy</subject><subject>Myocardial Infarction - genetics</subject><subject>Patients</subject><subject>Percutaneous Coronary Intervention - methods</subject><subject>Pharmacogenomic Testing - methods</subject><subject>Platelet Aggregation Inhibitors - administration &amp; dosage</subject><subject>Platelet Aggregation Inhibitors - adverse effects</subject><subject>Precision Medicine - methods</subject><subject>Time Factors</subject><issn>1462-2416</issn><issn>1744-8042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkcFrFTEQh0OxtLX16FUCXrysnZnkZXcvgjysCoX2oIfiIWSz2deU3WTdZIX335tHa1FPE2Y-fszkY-w1wnsirC_nXaoIsKkAUByxM6ylrBqQ9KK8paKKJKpT9jKlBwBCJeGEnVJbAyK1Z-zHlTPJd370ec9N6Lmf5tFNLmSTfQw8Dnx7d0tbbPnOhZj3sw877gOfy7xQia_p0DEh-3k02Y0u83zvFjPvL9jxYMbkXj3Vc_b96tO37Zfq-ubz1-3H68pK3OSqtqpFxF4KkD2I1lijHHXCStV1Rg7S2gbI9lAr7HvlumFolOos9BsEWXfinH14zJ3XbnK9LWstZtTz4iez7HU0Xv87Cf5e7-IvrcqHtEgl4N1TwBJ_ri5lPflk3Tia4OKaNIEgKVA0qqBv_0Mf4rqEcp4mQaqVm1q1haoeKbvElBY3PC-DoA_adNGmD9r0QVvh3_x9wTP9x5P4DX5IlLw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Bergmeijer, Thomas O</creator><creator>Vos, Gerrit Ja</creator><creator>Claassens, Daniël Mf</creator><creator>Janssen, Paul Wa</creator><creator>Harms, Remko</creator><creator>der Heide, Richard van</creator><creator>Asselbergs, Folkert W</creator><creator>Ten Berg, Jurriën M</creator><creator>Deneer, Vera Hm</creator><general>Future Medicine Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180501</creationdate><title>Feasibility and implementation of CYP2C19 genotyping in patients using antiplatelet therapy</title><author>Bergmeijer, Thomas O ; Vos, Gerrit Ja ; Claassens, Daniël Mf ; Janssen, Paul Wa ; Harms, Remko ; der Heide, Richard van ; Asselbergs, Folkert W ; Ten Berg, Jurriën M ; Deneer, Vera Hm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-7c69111d4304d039aca6e2b3c46bba4f4cc802cd0761dd6ebff866bc0d51047b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acute coronary syndromes</topic><topic>Angioplasty</topic><topic>Blood platelets</topic><topic>Cardiology</topic><topic>Consortia</topic><topic>Customization</topic><topic>Cytochrome</topic><topic>Cytochrome P-450 CYP2C19 - genetics</topic><topic>Drug dosages</topic><topic>Drug-Related Side Effects and Adverse Reactions - etiology</topic><topic>Drug-Related Side Effects and Adverse Reactions - genetics</topic><topic>Drug-Related Side Effects and Adverse Reactions - prevention &amp; control</topic><topic>Feasibility Studies</topic><topic>Genetics</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>Heart attacks</topic><topic>Humans</topic><topic>Intervention</topic><topic>Laboratories</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Myocardial infarction</topic><topic>Myocardial Infarction - drug therapy</topic><topic>Myocardial Infarction - genetics</topic><topic>Patients</topic><topic>Percutaneous Coronary Intervention - methods</topic><topic>Pharmacogenomic Testing - methods</topic><topic>Platelet Aggregation Inhibitors - administration &amp; dosage</topic><topic>Platelet Aggregation Inhibitors - adverse effects</topic><topic>Precision Medicine - methods</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergmeijer, Thomas O</creatorcontrib><creatorcontrib>Vos, Gerrit Ja</creatorcontrib><creatorcontrib>Claassens, Daniël Mf</creatorcontrib><creatorcontrib>Janssen, Paul Wa</creatorcontrib><creatorcontrib>Harms, Remko</creatorcontrib><creatorcontrib>der Heide, Richard van</creatorcontrib><creatorcontrib>Asselbergs, Folkert W</creatorcontrib><creatorcontrib>Ten Berg, Jurriën M</creatorcontrib><creatorcontrib>Deneer, Vera Hm</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>UK &amp; Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pharmacogenomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergmeijer, Thomas O</au><au>Vos, Gerrit Ja</au><au>Claassens, Daniël Mf</au><au>Janssen, Paul Wa</au><au>Harms, Remko</au><au>der Heide, Richard van</au><au>Asselbergs, Folkert W</au><au>Ten Berg, Jurriën M</au><au>Deneer, Vera Hm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feasibility and implementation of CYP2C19 genotyping in patients using antiplatelet therapy</atitle><jtitle>Pharmacogenomics</jtitle><addtitle>Pharmacogenomics</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>19</volume><issue>7</issue><spage>621</spage><epage>628</epage><pages>621-628</pages><issn>1462-2416</issn><eissn>1744-8042</eissn><abstract>A tailored antiplatelet strategy based on CYP2C19 genotype may reduce atherothrombotic and bleeding events. We describe our experience with CYP2C19 genotyping, using on-site TaqMan or Spartan genotyping or shipment to a central laboratory. Data from two ongoing projects were used: Popular Risk Score project (non-urgent percutaneous coronary intervention patients) and the Popular Genetics study (ST-segment elevation myocardial infarction patients). For both projects, the time to genotyping result was calculated. In the Popular Risk Score project (n = 2556), median time from blood collection to genotyping result was 4:04 h. In the Popular Genetics study (n = 1038), median time from randomization to genotyping result was 2:24 h. CYP2C19 genotyping is feasible in everyday clinical practice, both in the acute and non-acute settings.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>29701129</pmid><doi>10.2217/pgs-2018-0013</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2416
ispartof Pharmacogenomics, 2018-05, Vol.19 (7), p.621-628
issn 1462-2416
1744-8042
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6021912
source MEDLINE; PubMed Central
subjects Acute coronary syndromes
Angioplasty
Blood platelets
Cardiology
Consortia
Customization
Cytochrome
Cytochrome P-450 CYP2C19 - genetics
Drug dosages
Drug-Related Side Effects and Adverse Reactions - etiology
Drug-Related Side Effects and Adverse Reactions - genetics
Drug-Related Side Effects and Adverse Reactions - prevention & control
Feasibility Studies
Genetics
Genotype
Genotype & phenotype
Genotypes
Genotyping
Heart attacks
Humans
Intervention
Laboratories
Metabolism
Metabolites
Myocardial infarction
Myocardial Infarction - drug therapy
Myocardial Infarction - genetics
Patients
Percutaneous Coronary Intervention - methods
Pharmacogenomic Testing - methods
Platelet Aggregation Inhibitors - administration & dosage
Platelet Aggregation Inhibitors - adverse effects
Precision Medicine - methods
Time Factors
title Feasibility and implementation of CYP2C19 genotyping in patients using antiplatelet therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feasibility%20and%20implementation%20of%20CYP2C19%20genotyping%20in%20patients%20using%20antiplatelet%20therapy&rft.jtitle=Pharmacogenomics&rft.au=Bergmeijer,%20Thomas%20O&rft.date=2018-05-01&rft.volume=19&rft.issue=7&rft.spage=621&rft.epage=628&rft.pages=621-628&rft.issn=1462-2416&rft.eissn=1744-8042&rft_id=info:doi/10.2217/pgs-2018-0013&rft_dat=%3Cproquest_pubme%3E2032431386%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2326945769&rft_id=info:pmid/29701129&rfr_iscdi=true