Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions

The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear science 2018, Vol.28 (4), p.1467-1487
Hauptverfasser: Nie, Xiaokai, Luo, Jingjing, Coca, Daniel, Birkin, Mark, Chen, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1487
container_issue 4
container_start_page 1467
container_title Journal of nonlinear science
container_volume 28
creator Nie, Xiaokai
Luo, Jingjing
Coca, Daniel
Birkin, Mark
Chen, Jing
description The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experimentally.
doi_str_mv 10.1007/s00332-018-9455-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6018646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070806602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-71794dc7e85cf7bd75e2a12f8824078b2ad4fb69853f09c00b1eb6caa7149b4e3</originalsourceid><addsrcrecordid>eNp1UU1r3TAQFKWleUn7A3ophl56cbuyJEu-FELapIFAAy89C0leJw629CrJgffvK_PS9AN6WtidnZ3ZIeQNhQ8UQH5MAIw1NVBVd1yIGp6RDeWlQ3krn5MNdEzVqpP8iByndA9ApWDNS3LEAEAJ2m3Iw2WPPo_D6Eweg6_CUG1zcHcm5dKapn11jTEv0WJfnS45-DCHJVXbfco4p2qIYa5ucN6FaKZqiz8W9A7TSnMdgzV2nMa8rz6jT2s9X7xbz6RX5MVgpoSvH-sJ-X7-5ebsa3317eLy7PSqdlxCriWVHe-dRCXcIG0vBTaGNoNSDQepbGN6Pti2U4IN0DkAS9G2zhhJeWc5shPy6cC7W-yMvStei1C9i-Ns4l4HM-q_J36807fhQbflqS1vC8H7R4IYirmU9Twmh9NkPJZH6AYkKGhbaAr03T_Q-7BEX-wVlOhAMcZFQdEDysWQUsThSQwFvaaqD6nqIkCvqWooO2__dPG08SvGAmgOgFRG_hbj79P_Z_0JEkawYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059083345</pqid></control><display><type>article</type><title>Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions</title><source>SpringerNature Journals</source><creator>Nie, Xiaokai ; Luo, Jingjing ; Coca, Daniel ; Birkin, Mark ; Chen, Jing</creator><creatorcontrib>Nie, Xiaokai ; Luo, Jingjing ; Coca, Daniel ; Birkin, Mark ; Chen, Jing</creatorcontrib><description>The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experimentally.</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-018-9455-0</identifier><identifier>PMID: 30008519</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Classical Mechanics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Probability density functions ; Probability theory ; Theoretical</subject><ispartof>Journal of nonlinear science, 2018, Vol.28 (4), p.1467-1487</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-71794dc7e85cf7bd75e2a12f8824078b2ad4fb69853f09c00b1eb6caa7149b4e3</citedby><cites>FETCH-LOGICAL-c470t-71794dc7e85cf7bd75e2a12f8824078b2ad4fb69853f09c00b1eb6caa7149b4e3</cites><orcidid>0000-0002-2357-2947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00332-018-9455-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00332-018-9455-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30008519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Xiaokai</creatorcontrib><creatorcontrib>Luo, Jingjing</creatorcontrib><creatorcontrib>Coca, Daniel</creatorcontrib><creatorcontrib>Birkin, Mark</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><title>Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><addtitle>J Nonlinear Sci</addtitle><description>The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experimentally.</description><subject>Analysis</subject><subject>Classical Mechanics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Theoretical</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1UU1r3TAQFKWleUn7A3ophl56cbuyJEu-FELapIFAAy89C0leJw629CrJgffvK_PS9AN6WtidnZ3ZIeQNhQ8UQH5MAIw1NVBVd1yIGp6RDeWlQ3krn5MNdEzVqpP8iByndA9ApWDNS3LEAEAJ2m3Iw2WPPo_D6Eweg6_CUG1zcHcm5dKapn11jTEv0WJfnS45-DCHJVXbfco4p2qIYa5ucN6FaKZqiz8W9A7TSnMdgzV2nMa8rz6jT2s9X7xbz6RX5MVgpoSvH-sJ-X7-5ebsa3317eLy7PSqdlxCriWVHe-dRCXcIG0vBTaGNoNSDQepbGN6Pti2U4IN0DkAS9G2zhhJeWc5shPy6cC7W-yMvStei1C9i-Ns4l4HM-q_J36807fhQbflqS1vC8H7R4IYirmU9Twmh9NkPJZH6AYkKGhbaAr03T_Q-7BEX-wVlOhAMcZFQdEDysWQUsThSQwFvaaqD6nqIkCvqWooO2__dPG08SvGAmgOgFRG_hbj79P_Z_0JEkawYg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Nie, Xiaokai</creator><creator>Luo, Jingjing</creator><creator>Coca, Daniel</creator><creator>Birkin, Mark</creator><creator>Chen, Jing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2357-2947</orcidid></search><sort><creationdate>2018</creationdate><title>Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions</title><author>Nie, Xiaokai ; Luo, Jingjing ; Coca, Daniel ; Birkin, Mark ; Chen, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-71794dc7e85cf7bd75e2a12f8824078b2ad4fb69853f09c00b1eb6caa7149b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Classical Mechanics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Xiaokai</creatorcontrib><creatorcontrib>Luo, Jingjing</creatorcontrib><creatorcontrib>Coca, Daniel</creatorcontrib><creatorcontrib>Birkin, Mark</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Xiaokai</au><au>Luo, Jingjing</au><au>Coca, Daniel</au><au>Birkin, Mark</au><au>Chen, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><addtitle>J Nonlinear Sci</addtitle><date>2018</date><risdate>2018</risdate><volume>28</volume><issue>4</issue><spage>1467</spage><epage>1487</epage><pages>1467-1487</pages><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experimentally.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30008519</pmid><doi>10.1007/s00332-018-9455-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2357-2947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0938-8974
ispartof Journal of nonlinear science, 2018, Vol.28 (4), p.1467-1487
issn 0938-8974
1432-1467
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6018646
source SpringerNature Journals
subjects Analysis
Classical Mechanics
Economic Theory/Quantitative Economics/Mathematical Methods
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Probability density functions
Probability theory
Theoretical
title Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Stochastically%20Perturbed%20Autonomous%20Systems%20from%20Temporal%20Sequences%20of%20Probability%20Density%20Functions&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=Nie,%20Xiaokai&rft.date=2018&rft.volume=28&rft.issue=4&rft.spage=1467&rft.epage=1487&rft.pages=1467-1487&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-018-9455-0&rft_dat=%3Cproquest_pubme%3E2070806602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2059083345&rft_id=info:pmid/30008519&rfr_iscdi=true