Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions
The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experi...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear science 2018, Vol.28 (4), p.1467-1487 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1487 |
---|---|
container_issue | 4 |
container_start_page | 1467 |
container_title | Journal of nonlinear science |
container_volume | 28 |
creator | Nie, Xiaokai Luo, Jingjing Coca, Daniel Birkin, Mark Chen, Jing |
description | The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experimentally. |
doi_str_mv | 10.1007/s00332-018-9455-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6018646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070806602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-71794dc7e85cf7bd75e2a12f8824078b2ad4fb69853f09c00b1eb6caa7149b4e3</originalsourceid><addsrcrecordid>eNp1UU1r3TAQFKWleUn7A3ophl56cbuyJEu-FELapIFAAy89C0leJw629CrJgffvK_PS9AN6WtidnZ3ZIeQNhQ8UQH5MAIw1NVBVd1yIGp6RDeWlQ3krn5MNdEzVqpP8iByndA9ApWDNS3LEAEAJ2m3Iw2WPPo_D6Eweg6_CUG1zcHcm5dKapn11jTEv0WJfnS45-DCHJVXbfco4p2qIYa5ucN6FaKZqiz8W9A7TSnMdgzV2nMa8rz6jT2s9X7xbz6RX5MVgpoSvH-sJ-X7-5ebsa3317eLy7PSqdlxCriWVHe-dRCXcIG0vBTaGNoNSDQepbGN6Pti2U4IN0DkAS9G2zhhJeWc5shPy6cC7W-yMvStei1C9i-Ns4l4HM-q_J36807fhQbflqS1vC8H7R4IYirmU9Twmh9NkPJZH6AYkKGhbaAr03T_Q-7BEX-wVlOhAMcZFQdEDysWQUsThSQwFvaaqD6nqIkCvqWooO2__dPG08SvGAmgOgFRG_hbj79P_Z_0JEkawYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059083345</pqid></control><display><type>article</type><title>Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions</title><source>SpringerNature Journals</source><creator>Nie, Xiaokai ; Luo, Jingjing ; Coca, Daniel ; Birkin, Mark ; Chen, Jing</creator><creatorcontrib>Nie, Xiaokai ; Luo, Jingjing ; Coca, Daniel ; Birkin, Mark ; Chen, Jing</creatorcontrib><description>The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experimentally.</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-018-9455-0</identifier><identifier>PMID: 30008519</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Classical Mechanics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Probability density functions ; Probability theory ; Theoretical</subject><ispartof>Journal of nonlinear science, 2018, Vol.28 (4), p.1467-1487</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-71794dc7e85cf7bd75e2a12f8824078b2ad4fb69853f09c00b1eb6caa7149b4e3</citedby><cites>FETCH-LOGICAL-c470t-71794dc7e85cf7bd75e2a12f8824078b2ad4fb69853f09c00b1eb6caa7149b4e3</cites><orcidid>0000-0002-2357-2947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00332-018-9455-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00332-018-9455-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30008519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Xiaokai</creatorcontrib><creatorcontrib>Luo, Jingjing</creatorcontrib><creatorcontrib>Coca, Daniel</creatorcontrib><creatorcontrib>Birkin, Mark</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><title>Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><addtitle>J Nonlinear Sci</addtitle><description>The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experimentally.</description><subject>Analysis</subject><subject>Classical Mechanics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Theoretical</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1UU1r3TAQFKWleUn7A3ophl56cbuyJEu-FELapIFAAy89C0leJw629CrJgffvK_PS9AN6WtidnZ3ZIeQNhQ8UQH5MAIw1NVBVd1yIGp6RDeWlQ3krn5MNdEzVqpP8iByndA9ApWDNS3LEAEAJ2m3Iw2WPPo_D6Eweg6_CUG1zcHcm5dKapn11jTEv0WJfnS45-DCHJVXbfco4p2qIYa5ucN6FaKZqiz8W9A7TSnMdgzV2nMa8rz6jT2s9X7xbz6RX5MVgpoSvH-sJ-X7-5ebsa3317eLy7PSqdlxCriWVHe-dRCXcIG0vBTaGNoNSDQepbGN6Pti2U4IN0DkAS9G2zhhJeWc5shPy6cC7W-yMvStei1C9i-Ns4l4HM-q_J36807fhQbflqS1vC8H7R4IYirmU9Twmh9NkPJZH6AYkKGhbaAr03T_Q-7BEX-wVlOhAMcZFQdEDysWQUsThSQwFvaaqD6nqIkCvqWooO2__dPG08SvGAmgOgFRG_hbj79P_Z_0JEkawYg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Nie, Xiaokai</creator><creator>Luo, Jingjing</creator><creator>Coca, Daniel</creator><creator>Birkin, Mark</creator><creator>Chen, Jing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2357-2947</orcidid></search><sort><creationdate>2018</creationdate><title>Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions</title><author>Nie, Xiaokai ; Luo, Jingjing ; Coca, Daniel ; Birkin, Mark ; Chen, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-71794dc7e85cf7bd75e2a12f8824078b2ad4fb69853f09c00b1eb6caa7149b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Classical Mechanics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Xiaokai</creatorcontrib><creatorcontrib>Luo, Jingjing</creatorcontrib><creatorcontrib>Coca, Daniel</creatorcontrib><creatorcontrib>Birkin, Mark</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Xiaokai</au><au>Luo, Jingjing</au><au>Coca, Daniel</au><au>Birkin, Mark</au><au>Chen, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><addtitle>J Nonlinear Sci</addtitle><date>2018</date><risdate>2018</risdate><volume>28</volume><issue>4</issue><spage>1467</spage><epage>1487</epage><pages>1467-1487</pages><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experimentally.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30008519</pmid><doi>10.1007/s00332-018-9455-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2357-2947</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-8974 |
ispartof | Journal of nonlinear science, 2018, Vol.28 (4), p.1467-1487 |
issn | 0938-8974 1432-1467 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6018646 |
source | SpringerNature Journals |
subjects | Analysis Classical Mechanics Economic Theory/Quantitative Economics/Mathematical Methods Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Probability density functions Probability theory Theoretical |
title | Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Stochastically%20Perturbed%20Autonomous%20Systems%20from%20Temporal%20Sequences%20of%20Probability%20Density%20Functions&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=Nie,%20Xiaokai&rft.date=2018&rft.volume=28&rft.issue=4&rft.spage=1467&rft.epage=1487&rft.pages=1467-1487&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-018-9455-0&rft_dat=%3Cproquest_pubme%3E2070806602%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2059083345&rft_id=info:pmid/30008519&rfr_iscdi=true |