Transcriptome analysis of two contrasting rice cultivars during alkaline stress

Soil alkalinity greatly affects plant growth and crop productivity. Although RNA-Seq analyses have been conducted to investigate genome-wide gene expression in response to alkaline stress in many plants, the expressions of alkali-responsive genes in rice have not been previously investigated. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-06, Vol.8 (1), p.9586-16, Article 9586
Hauptverfasser: Li, Ning, Liu, Hualong, Sun, Jian, Zheng, Hongliang, Wang, Jingguo, Yang, Luomiao, Zhao, Hongwei, Zou, Detang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 1
container_start_page 9586
container_title Scientific reports
container_volume 8
creator Li, Ning
Liu, Hualong
Sun, Jian
Zheng, Hongliang
Wang, Jingguo
Yang, Luomiao
Zhao, Hongwei
Zou, Detang
description Soil alkalinity greatly affects plant growth and crop productivity. Although RNA-Seq analyses have been conducted to investigate genome-wide gene expression in response to alkaline stress in many plants, the expressions of alkali-responsive genes in rice have not been previously investigated. In this study, the transcriptomic data between an alkaline-tolerant (WD20342) and an alkaline-sensitive (Caidao) rice cultivar were compared under alkaline stress conditions. A total of 962 important alkali-responsive (IAR) genes from highly differentially expressed genes (DEGs) were identified, including 28 alkaline-resistant cultivar-related genes, 771 alkaline-sensitive cultivar-related genes and 163 cultivar-non-specific genes. Gene ontology (GO) analysis indicated the enrichment of IAR genes involved in various stimulus or stress responses. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the IAR genes were related primarily to plant hormone signal transduction and biosynthesis of secondary metabolites. Additionally, among these 962 IAR genes, 74 were transcription factors and 15 occurred with differential alternative splicing between the different samples after alkaline treatment. Our results provide a valuable resource on alkali-responsive genes and should benefit the improvement of alkaline stress tolerance in rice.
doi_str_mv 10.1038/s41598-018-27940-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6018505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2059581476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-ea63c48920867d7ea63024fc1285f493594dbc0abf1e1bd50cd1de1384ae8d203</originalsourceid><addsrcrecordid>eNp9kU1PxCAQhonR6Eb9Ax5MEy9eqkChhYuJ2fiVmHhZz4SldEW7ZWXadfffS62uHwe5MAPPvAzzInRE8BnBmTgHRrgUKSYipYVkOF1toRHFjKc0o3T7R7yHDgGecVycSkbkLtqjsg94PkIPk6AbMMEtWj-3iW50vQYHia-S9s0nxjdt0NC6ZpYEZ2xiurp1Sx0gKbvQn-r6RdeusQm0wQIcoJ1K12APP_d99Hh9NRnfpvcPN3fjy_vU8KJoU6vzzDAhKRZ5URZ9iimrDKGCV0xmXLJyarCeVsSSacmxKUlpSSaYtqKkONtHF4PuopvObWls32etFsHNdVgrr536fdO4JzXzS5XHiXHMo8Dpp0Dwr52FVs0dGFvXurG-A0Uxl1wQVuQRPfmDPvsuxEkNFCZEUBIpOlAmeIBgq00zBKveMjVYpmID6sMytYpFxz-_sSn5MigC2QDAoh-3Dd9v_yP7DqB6o_o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059011821</pqid></control><display><type>article</type><title>Transcriptome analysis of two contrasting rice cultivars during alkaline stress</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Li, Ning ; Liu, Hualong ; Sun, Jian ; Zheng, Hongliang ; Wang, Jingguo ; Yang, Luomiao ; Zhao, Hongwei ; Zou, Detang</creator><creatorcontrib>Li, Ning ; Liu, Hualong ; Sun, Jian ; Zheng, Hongliang ; Wang, Jingguo ; Yang, Luomiao ; Zhao, Hongwei ; Zou, Detang</creatorcontrib><description>Soil alkalinity greatly affects plant growth and crop productivity. Although RNA-Seq analyses have been conducted to investigate genome-wide gene expression in response to alkaline stress in many plants, the expressions of alkali-responsive genes in rice have not been previously investigated. In this study, the transcriptomic data between an alkaline-tolerant (WD20342) and an alkaline-sensitive (Caidao) rice cultivar were compared under alkaline stress conditions. A total of 962 important alkali-responsive (IAR) genes from highly differentially expressed genes (DEGs) were identified, including 28 alkaline-resistant cultivar-related genes, 771 alkaline-sensitive cultivar-related genes and 163 cultivar-non-specific genes. Gene ontology (GO) analysis indicated the enrichment of IAR genes involved in various stimulus or stress responses. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the IAR genes were related primarily to plant hormone signal transduction and biosynthesis of secondary metabolites. Additionally, among these 962 IAR genes, 74 were transcription factors and 15 occurred with differential alternative splicing between the different samples after alkaline treatment. Our results provide a valuable resource on alkali-responsive genes and should benefit the improvement of alkaline stress tolerance in rice.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-27940-x</identifier><identifier>PMID: 29941956</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/39 ; 631/449/2661/2665 ; 631/449/711 ; Alkaline soils ; Alkalinity ; Alternative splicing ; Biosynthesis ; Crop production ; Cultivars ; Gene expression ; Genomes ; Humanities and Social Sciences ; Metabolites ; multidisciplinary ; Oryza ; Plant growth ; Plant hormones ; Ribonucleic acid ; Rice ; RNA ; Science ; Science (multidisciplinary) ; Secondary metabolites ; Signal transduction ; Transcription factors ; Transduction</subject><ispartof>Scientific reports, 2018-06, Vol.8 (1), p.9586-16, Article 9586</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-ea63c48920867d7ea63024fc1285f493594dbc0abf1e1bd50cd1de1384ae8d203</citedby><cites>FETCH-LOGICAL-c577t-ea63c48920867d7ea63024fc1285f493594dbc0abf1e1bd50cd1de1384ae8d203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018505/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6018505/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29941956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Liu, Hualong</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Zheng, Hongliang</creatorcontrib><creatorcontrib>Wang, Jingguo</creatorcontrib><creatorcontrib>Yang, Luomiao</creatorcontrib><creatorcontrib>Zhao, Hongwei</creatorcontrib><creatorcontrib>Zou, Detang</creatorcontrib><title>Transcriptome analysis of two contrasting rice cultivars during alkaline stress</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Soil alkalinity greatly affects plant growth and crop productivity. Although RNA-Seq analyses have been conducted to investigate genome-wide gene expression in response to alkaline stress in many plants, the expressions of alkali-responsive genes in rice have not been previously investigated. In this study, the transcriptomic data between an alkaline-tolerant (WD20342) and an alkaline-sensitive (Caidao) rice cultivar were compared under alkaline stress conditions. A total of 962 important alkali-responsive (IAR) genes from highly differentially expressed genes (DEGs) were identified, including 28 alkaline-resistant cultivar-related genes, 771 alkaline-sensitive cultivar-related genes and 163 cultivar-non-specific genes. Gene ontology (GO) analysis indicated the enrichment of IAR genes involved in various stimulus or stress responses. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the IAR genes were related primarily to plant hormone signal transduction and biosynthesis of secondary metabolites. Additionally, among these 962 IAR genes, 74 were transcription factors and 15 occurred with differential alternative splicing between the different samples after alkaline treatment. Our results provide a valuable resource on alkali-responsive genes and should benefit the improvement of alkaline stress tolerance in rice.</description><subject>38/39</subject><subject>631/449/2661/2665</subject><subject>631/449/711</subject><subject>Alkaline soils</subject><subject>Alkalinity</subject><subject>Alternative splicing</subject><subject>Biosynthesis</subject><subject>Crop production</subject><subject>Cultivars</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Metabolites</subject><subject>multidisciplinary</subject><subject>Oryza</subject><subject>Plant growth</subject><subject>Plant hormones</subject><subject>Ribonucleic acid</subject><subject>Rice</subject><subject>RNA</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Secondary metabolites</subject><subject>Signal transduction</subject><subject>Transcription factors</subject><subject>Transduction</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1PxCAQhonR6Eb9Ax5MEy9eqkChhYuJ2fiVmHhZz4SldEW7ZWXadfffS62uHwe5MAPPvAzzInRE8BnBmTgHRrgUKSYipYVkOF1toRHFjKc0o3T7R7yHDgGecVycSkbkLtqjsg94PkIPk6AbMMEtWj-3iW50vQYHia-S9s0nxjdt0NC6ZpYEZ2xiurp1Sx0gKbvQn-r6RdeusQm0wQIcoJ1K12APP_d99Hh9NRnfpvcPN3fjy_vU8KJoU6vzzDAhKRZ5URZ9iimrDKGCV0xmXLJyarCeVsSSacmxKUlpSSaYtqKkONtHF4PuopvObWls32etFsHNdVgrr536fdO4JzXzS5XHiXHMo8Dpp0Dwr52FVs0dGFvXurG-A0Uxl1wQVuQRPfmDPvsuxEkNFCZEUBIpOlAmeIBgq00zBKveMjVYpmID6sMytYpFxz-_sSn5MigC2QDAoh-3Dd9v_yP7DqB6o_o</recordid><startdate>20180625</startdate><enddate>20180625</enddate><creator>Li, Ning</creator><creator>Liu, Hualong</creator><creator>Sun, Jian</creator><creator>Zheng, Hongliang</creator><creator>Wang, Jingguo</creator><creator>Yang, Luomiao</creator><creator>Zhao, Hongwei</creator><creator>Zou, Detang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180625</creationdate><title>Transcriptome analysis of two contrasting rice cultivars during alkaline stress</title><author>Li, Ning ; Liu, Hualong ; Sun, Jian ; Zheng, Hongliang ; Wang, Jingguo ; Yang, Luomiao ; Zhao, Hongwei ; Zou, Detang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-ea63c48920867d7ea63024fc1285f493594dbc0abf1e1bd50cd1de1384ae8d203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>38/39</topic><topic>631/449/2661/2665</topic><topic>631/449/711</topic><topic>Alkaline soils</topic><topic>Alkalinity</topic><topic>Alternative splicing</topic><topic>Biosynthesis</topic><topic>Crop production</topic><topic>Cultivars</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Metabolites</topic><topic>multidisciplinary</topic><topic>Oryza</topic><topic>Plant growth</topic><topic>Plant hormones</topic><topic>Ribonucleic acid</topic><topic>Rice</topic><topic>RNA</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Secondary metabolites</topic><topic>Signal transduction</topic><topic>Transcription factors</topic><topic>Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Liu, Hualong</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Zheng, Hongliang</creatorcontrib><creatorcontrib>Wang, Jingguo</creatorcontrib><creatorcontrib>Yang, Luomiao</creatorcontrib><creatorcontrib>Zhao, Hongwei</creatorcontrib><creatorcontrib>Zou, Detang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ning</au><au>Liu, Hualong</au><au>Sun, Jian</au><au>Zheng, Hongliang</au><au>Wang, Jingguo</au><au>Yang, Luomiao</au><au>Zhao, Hongwei</au><au>Zou, Detang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome analysis of two contrasting rice cultivars during alkaline stress</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-06-25</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>9586</spage><epage>16</epage><pages>9586-16</pages><artnum>9586</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Soil alkalinity greatly affects plant growth and crop productivity. Although RNA-Seq analyses have been conducted to investigate genome-wide gene expression in response to alkaline stress in many plants, the expressions of alkali-responsive genes in rice have not been previously investigated. In this study, the transcriptomic data between an alkaline-tolerant (WD20342) and an alkaline-sensitive (Caidao) rice cultivar were compared under alkaline stress conditions. A total of 962 important alkali-responsive (IAR) genes from highly differentially expressed genes (DEGs) were identified, including 28 alkaline-resistant cultivar-related genes, 771 alkaline-sensitive cultivar-related genes and 163 cultivar-non-specific genes. Gene ontology (GO) analysis indicated the enrichment of IAR genes involved in various stimulus or stress responses. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the IAR genes were related primarily to plant hormone signal transduction and biosynthesis of secondary metabolites. Additionally, among these 962 IAR genes, 74 were transcription factors and 15 occurred with differential alternative splicing between the different samples after alkaline treatment. Our results provide a valuable resource on alkali-responsive genes and should benefit the improvement of alkaline stress tolerance in rice.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29941956</pmid><doi>10.1038/s41598-018-27940-x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-06, Vol.8 (1), p.9586-16, Article 9586
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6018505
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 38/39
631/449/2661/2665
631/449/711
Alkaline soils
Alkalinity
Alternative splicing
Biosynthesis
Crop production
Cultivars
Gene expression
Genomes
Humanities and Social Sciences
Metabolites
multidisciplinary
Oryza
Plant growth
Plant hormones
Ribonucleic acid
Rice
RNA
Science
Science (multidisciplinary)
Secondary metabolites
Signal transduction
Transcription factors
Transduction
title Transcriptome analysis of two contrasting rice cultivars during alkaline stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20analysis%20of%20two%20contrasting%20rice%20cultivars%20during%20alkaline%20stress&rft.jtitle=Scientific%20reports&rft.au=Li,%20Ning&rft.date=2018-06-25&rft.volume=8&rft.issue=1&rft.spage=9586&rft.epage=16&rft.pages=9586-16&rft.artnum=9586&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-27940-x&rft_dat=%3Cproquest_pubme%3E2059581476%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2059011821&rft_id=info:pmid/29941956&rfr_iscdi=true