Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo

The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2018-06, Vol.29 (12), p.1435-1448
Hauptverfasser: Gerhold, Abigail R, Poupart, Vincent, Labbé, Jean-Claude, Maddox, Paul S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1448
container_issue 12
container_start_page 1435
container_title Molecular biology of the cell
container_volume 29
creator Gerhold, Abigail R
Poupart, Vincent
Labbé, Jean-Claude
Maddox, Paul S
description The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC.
doi_str_mv 10.1091/mbc.E18-04-0215
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6014101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030915974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-6a3c0351b940e79862bea1bb94e1af74a1b97285bee1bf4cbe9da035b3cf10023</originalsourceid><addsrcrecordid>eNpVkctPAyEQxonR2Po4ezMcvWyFXfbBxcQ0vhITD-oZgZ3tYnehAjXpfy-N2uhpZsI33zDzQ-iMkhklnF6OSs9uaJMRlpGclntoSnnBM1Y21X7KSckzWuZsgo5CeCeEMlbVh2iS86ppas6m6O15ZWw7AJYhwKiGDdY96OXKGRtxiB7sIvbYBDwYu4QWR4c1DAPuZARsLI494LkE63wvVWtiUsIAC2lTHJXfuBN00MkhwOlPPEavtzcv8_vs8enuYX79mOmizGNWyUKToqSKMwI1b6pcgaQqlUBlV7OU8zpvSgVAVce0At7K1KAK3VFC8uIYXX37rtZqhFaDjV4OYuXNKP1GOGnE_xdrerFwn6JKV6GEJoOLHwPvPtYQohhN2O4qLbh1EDkp0sVLXrMkvfyWau9C8NDtxlAitlxE4iISF0GY2HJJHed_f7fT_4IovgCGX4wm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030915974</pqid></control><display><type>article</type><title>Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo</title><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gerhold, Abigail R ; Poupart, Vincent ; Labbé, Jean-Claude ; Maddox, Paul S</creator><creatorcontrib>Gerhold, Abigail R ; Poupart, Vincent ; Labbé, Jean-Claude ; Maddox, Paul S</creatorcontrib><description>The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E18-04-0215</identifier><identifier>PMID: 29688794</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><ispartof>Molecular biology of the cell, 2018-06, Vol.29 (12), p.1435-1448</ispartof><rights>2018 Gerhold “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-6a3c0351b940e79862bea1bb94e1af74a1b97285bee1bf4cbe9da035b3cf10023</citedby><cites>FETCH-LOGICAL-c352t-6a3c0351b940e79862bea1bb94e1af74a1b97285bee1bf4cbe9da035b3cf10023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014101/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014101/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29688794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerhold, Abigail R</creatorcontrib><creatorcontrib>Poupart, Vincent</creatorcontrib><creatorcontrib>Labbé, Jean-Claude</creatorcontrib><creatorcontrib>Maddox, Paul S</creatorcontrib><title>Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC.</description><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkctPAyEQxonR2Po4ezMcvWyFXfbBxcQ0vhITD-oZgZ3tYnehAjXpfy-N2uhpZsI33zDzQ-iMkhklnF6OSs9uaJMRlpGclntoSnnBM1Y21X7KSckzWuZsgo5CeCeEMlbVh2iS86ppas6m6O15ZWw7AJYhwKiGDdY96OXKGRtxiB7sIvbYBDwYu4QWR4c1DAPuZARsLI494LkE63wvVWtiUsIAC2lTHJXfuBN00MkhwOlPPEavtzcv8_vs8enuYX79mOmizGNWyUKToqSKMwI1b6pcgaQqlUBlV7OU8zpvSgVAVce0At7K1KAK3VFC8uIYXX37rtZqhFaDjV4OYuXNKP1GOGnE_xdrerFwn6JKV6GEJoOLHwPvPtYQohhN2O4qLbh1EDkp0sVLXrMkvfyWau9C8NDtxlAitlxE4iISF0GY2HJJHed_f7fT_4IovgCGX4wm</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Gerhold, Abigail R</creator><creator>Poupart, Vincent</creator><creator>Labbé, Jean-Claude</creator><creator>Maddox, Paul S</creator><general>The American Society for Cell Biology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180615</creationdate><title>Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo</title><author>Gerhold, Abigail R ; Poupart, Vincent ; Labbé, Jean-Claude ; Maddox, Paul S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-6a3c0351b940e79862bea1bb94e1af74a1b97285bee1bf4cbe9da035b3cf10023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerhold, Abigail R</creatorcontrib><creatorcontrib>Poupart, Vincent</creatorcontrib><creatorcontrib>Labbé, Jean-Claude</creatorcontrib><creatorcontrib>Maddox, Paul S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerhold, Abigail R</au><au>Poupart, Vincent</au><au>Labbé, Jean-Claude</au><au>Maddox, Paul S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2018-06-15</date><risdate>2018</risdate><volume>29</volume><issue>12</issue><spage>1435</spage><epage>1448</epage><pages>1435-1448</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>29688794</pmid><doi>10.1091/mbc.E18-04-0215</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2018-06, Vol.29 (12), p.1435-1448
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6014101
source PubMed Central; Free Full-Text Journals in Chemistry
title Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spindle%20assembly%20checkpoint%20strength%20is%20linked%20to%20cell%20fate%20in%20the%20Caenorhabditis%20elegans%20embryo&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Gerhold,%20Abigail%20R&rft.date=2018-06-15&rft.volume=29&rft.issue=12&rft.spage=1435&rft.epage=1448&rft.pages=1435-1448&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E18-04-0215&rft_dat=%3Cproquest_pubme%3E2030915974%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030915974&rft_id=info:pmid/29688794&rfr_iscdi=true