Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo
The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of th...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2018-06, Vol.29 (12), p.1435-1448 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1448 |
---|---|
container_issue | 12 |
container_start_page | 1435 |
container_title | Molecular biology of the cell |
container_volume | 29 |
creator | Gerhold, Abigail R Poupart, Vincent Labbé, Jean-Claude Maddox, Paul S |
description | The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P
blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC. |
doi_str_mv | 10.1091/mbc.E18-04-0215 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6014101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2030915974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-6a3c0351b940e79862bea1bb94e1af74a1b97285bee1bf4cbe9da035b3cf10023</originalsourceid><addsrcrecordid>eNpVkctPAyEQxonR2Po4ezMcvWyFXfbBxcQ0vhITD-oZgZ3tYnehAjXpfy-N2uhpZsI33zDzQ-iMkhklnF6OSs9uaJMRlpGclntoSnnBM1Y21X7KSckzWuZsgo5CeCeEMlbVh2iS86ppas6m6O15ZWw7AJYhwKiGDdY96OXKGRtxiB7sIvbYBDwYu4QWR4c1DAPuZARsLI494LkE63wvVWtiUsIAC2lTHJXfuBN00MkhwOlPPEavtzcv8_vs8enuYX79mOmizGNWyUKToqSKMwI1b6pcgaQqlUBlV7OU8zpvSgVAVce0At7K1KAK3VFC8uIYXX37rtZqhFaDjV4OYuXNKP1GOGnE_xdrerFwn6JKV6GEJoOLHwPvPtYQohhN2O4qLbh1EDkp0sVLXrMkvfyWau9C8NDtxlAitlxE4iISF0GY2HJJHed_f7fT_4IovgCGX4wm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030915974</pqid></control><display><type>article</type><title>Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo</title><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Gerhold, Abigail R ; Poupart, Vincent ; Labbé, Jean-Claude ; Maddox, Paul S</creator><creatorcontrib>Gerhold, Abigail R ; Poupart, Vincent ; Labbé, Jean-Claude ; Maddox, Paul S</creatorcontrib><description>The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P
blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E18-04-0215</identifier><identifier>PMID: 29688794</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><ispartof>Molecular biology of the cell, 2018-06, Vol.29 (12), p.1435-1448</ispartof><rights>2018 Gerhold “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-6a3c0351b940e79862bea1bb94e1af74a1b97285bee1bf4cbe9da035b3cf10023</citedby><cites>FETCH-LOGICAL-c352t-6a3c0351b940e79862bea1bb94e1af74a1b97285bee1bf4cbe9da035b3cf10023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014101/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014101/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29688794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerhold, Abigail R</creatorcontrib><creatorcontrib>Poupart, Vincent</creatorcontrib><creatorcontrib>Labbé, Jean-Claude</creatorcontrib><creatorcontrib>Maddox, Paul S</creatorcontrib><title>Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P
blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC.</description><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkctPAyEQxonR2Po4ezMcvWyFXfbBxcQ0vhITD-oZgZ3tYnehAjXpfy-N2uhpZsI33zDzQ-iMkhklnF6OSs9uaJMRlpGclntoSnnBM1Y21X7KSckzWuZsgo5CeCeEMlbVh2iS86ppas6m6O15ZWw7AJYhwKiGDdY96OXKGRtxiB7sIvbYBDwYu4QWR4c1DAPuZARsLI494LkE63wvVWtiUsIAC2lTHJXfuBN00MkhwOlPPEavtzcv8_vs8enuYX79mOmizGNWyUKToqSKMwI1b6pcgaQqlUBlV7OU8zpvSgVAVce0At7K1KAK3VFC8uIYXX37rtZqhFaDjV4OYuXNKP1GOGnE_xdrerFwn6JKV6GEJoOLHwPvPtYQohhN2O4qLbh1EDkp0sVLXrMkvfyWau9C8NDtxlAitlxE4iISF0GY2HJJHed_f7fT_4IovgCGX4wm</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Gerhold, Abigail R</creator><creator>Poupart, Vincent</creator><creator>Labbé, Jean-Claude</creator><creator>Maddox, Paul S</creator><general>The American Society for Cell Biology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180615</creationdate><title>Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo</title><author>Gerhold, Abigail R ; Poupart, Vincent ; Labbé, Jean-Claude ; Maddox, Paul S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-6a3c0351b940e79862bea1bb94e1af74a1b97285bee1bf4cbe9da035b3cf10023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerhold, Abigail R</creatorcontrib><creatorcontrib>Poupart, Vincent</creatorcontrib><creatorcontrib>Labbé, Jean-Claude</creatorcontrib><creatorcontrib>Maddox, Paul S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerhold, Abigail R</au><au>Poupart, Vincent</au><au>Labbé, Jean-Claude</au><au>Maddox, Paul S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2018-06-15</date><risdate>2018</risdate><volume>29</volume><issue>12</issue><spage>1435</spage><epage>1448</epage><pages>1435-1448</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P
blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>29688794</pmid><doi>10.1091/mbc.E18-04-0215</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2018-06, Vol.29 (12), p.1435-1448 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6014101 |
source | PubMed Central; Free Full-Text Journals in Chemistry |
title | Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spindle%20assembly%20checkpoint%20strength%20is%20linked%20to%20cell%20fate%20in%20the%20Caenorhabditis%20elegans%20embryo&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Gerhold,%20Abigail%20R&rft.date=2018-06-15&rft.volume=29&rft.issue=12&rft.spage=1435&rft.epage=1448&rft.pages=1435-1448&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E18-04-0215&rft_dat=%3Cproquest_pubme%3E2030915974%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030915974&rft_id=info:pmid/29688794&rfr_iscdi=true |