The ropAe gene encodes a porin‐like protein involved in copper transit in Rhizobium etli CFN42
Copper (Cu) is an essential micronutrient for all aerobic forms of life. Its oxidation states (Cu+/Cu2+) make this metal an important cofactor of enzymes catalyzing redox reactions in essential biological processes. In gram‐negative bacteria, Cu uptake is an unexplored component of a finely regulate...
Gespeichert in:
Veröffentlicht in: | MicrobiologyOpen (Weinheim) 2018-06, Vol.7 (3), p.e00573-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e00573 |
container_title | MicrobiologyOpen (Weinheim) |
container_volume | 7 |
creator | González‐Sánchez, Antonio Cubillas, Ciro A. Miranda, Fabiola Dávalos, Araceli García‐de los Santos, Alejandro |
description | Copper (Cu) is an essential micronutrient for all aerobic forms of life. Its oxidation states (Cu+/Cu2+) make this metal an important cofactor of enzymes catalyzing redox reactions in essential biological processes. In gram‐negative bacteria, Cu uptake is an unexplored component of a finely regulated trafficking network, mediated by protein–protein interactions that deliver Cu to target proteins and efflux surplus metal to avoid toxicity. Rhizobium etliCFN42 is a facultative symbiotic diazotroph that must ensure its appropriate Cu supply for living either free in the soil or as an intracellular symbiont of leguminous plants. In crop fields, rhizobia have to contend with copper‐based fungicides. A detailed deletion analysis of the pRet42e (505 kb) plasmid from an R. etli mutant with enhanced CuCl2 tolerance led us to the identification of the ropAe gene, predicted to encode an outer membrane protein (OMP) with a β–barrel channel structure that may be involved in Cu transport. In support of this hypothesis, the functional characterization of ropAe revealed that: (I) gene disruption increased copper tolerance of the mutant, and its complementation with the wild‐type gene restored its wild‐type copper sensitivity; (II) the ropAe gene maintains a low basal transcription level in copper overload, but is upregulated when copper is scarce; (III) disruption of ropAe in an actP (copA) mutant background, defective in copper efflux, partially reduced its copper sensitivity phenotype. Finally, BLASTP comparisons and a maximum likelihood phylogenetic analysis highlight the diversification of four RopA paralogs in members of the Rhizobiaceae family. Orthologs of RopAe are highly conserved in the Rhizobiales order, poorly conserved in other alpha proteobacteria and phylogenetically unrelated to characterized porins involved in Cu or Mn uptake.
The copper uptake in gram‐negative bacteria has not been elucidated. In this study, we present the identification and characterization of ropAe a gene from Rhizobium etli CFN42 encoding a porin‐like outer membrane protein involved in copper transit. |
doi_str_mv | 10.1002/mbo3.573 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6011978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299782162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4663-af2c2959d41d767e48418ff83faefcedab53fd4d00ebd7747aac739b448af3613</originalsourceid><addsrcrecordid>eNp1kc1qFTEYhoNYbGkLXoEE3LiZmr-ZZDZCPVgtVAtS1zEz-dKTOpOMycyRuvISvEavpDm01iqYTT6Sh4f340XoKSVHlBD2cuwiP6olf4T2GBF1pRSTjx_Mu-gw5ytSjiSsEfQJ2mUtU4QLvoc-X6wBpzgdA76EABhCHy1kbPAUkw-_fvwc_BfAU4oz-IB92MRhA7YMuI_TBAnPyYTs5-3Lx7X_Hju_jBjmwePVyQfBDtCOM0OGw7t7H306eXOxelednb89XR2fVb1oGl4Zx3rW1q0V1MpGglCCKucUdwZcD9Z0NXdWWEKgs1IKaUwvedsJoYzjDeX76NWtd1q6EWwPoQQb9JT8aNK1jsbrv3-CX-vLuNENobSVqghe3AlS_LpAnvXocw_DYALEJWvaKkrqErYp6PN_0Ku4pFDW04y1RcZow_4I-xRzTuDuw1Cit83pbXO6NFfQZw_D34O_eypAdQt88wNc_1ek378-51vhDe_uo4s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299782162</pqid></control><display><type>article</type><title>The ropAe gene encodes a porin‐like protein involved in copper transit in Rhizobium etli CFN42</title><source>MEDLINE</source><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>González‐Sánchez, Antonio ; Cubillas, Ciro A. ; Miranda, Fabiola ; Dávalos, Araceli ; García‐de los Santos, Alejandro</creator><creatorcontrib>González‐Sánchez, Antonio ; Cubillas, Ciro A. ; Miranda, Fabiola ; Dávalos, Araceli ; García‐de los Santos, Alejandro</creatorcontrib><description>Copper (Cu) is an essential micronutrient for all aerobic forms of life. Its oxidation states (Cu+/Cu2+) make this metal an important cofactor of enzymes catalyzing redox reactions in essential biological processes. In gram‐negative bacteria, Cu uptake is an unexplored component of a finely regulated trafficking network, mediated by protein–protein interactions that deliver Cu to target proteins and efflux surplus metal to avoid toxicity. Rhizobium etliCFN42 is a facultative symbiotic diazotroph that must ensure its appropriate Cu supply for living either free in the soil or as an intracellular symbiont of leguminous plants. In crop fields, rhizobia have to contend with copper‐based fungicides. A detailed deletion analysis of the pRet42e (505 kb) plasmid from an R. etli mutant with enhanced CuCl2 tolerance led us to the identification of the ropAe gene, predicted to encode an outer membrane protein (OMP) with a β–barrel channel structure that may be involved in Cu transport. In support of this hypothesis, the functional characterization of ropAe revealed that: (I) gene disruption increased copper tolerance of the mutant, and its complementation with the wild‐type gene restored its wild‐type copper sensitivity; (II) the ropAe gene maintains a low basal transcription level in copper overload, but is upregulated when copper is scarce; (III) disruption of ropAe in an actP (copA) mutant background, defective in copper efflux, partially reduced its copper sensitivity phenotype. Finally, BLASTP comparisons and a maximum likelihood phylogenetic analysis highlight the diversification of four RopA paralogs in members of the Rhizobiaceae family. Orthologs of RopAe are highly conserved in the Rhizobiales order, poorly conserved in other alpha proteobacteria and phylogenetically unrelated to characterized porins involved in Cu or Mn uptake.
The copper uptake in gram‐negative bacteria has not been elucidated. In this study, we present the identification and characterization of ropAe a gene from Rhizobium etli CFN42 encoding a porin‐like outer membrane protein involved in copper transit.</description><identifier>ISSN: 2045-8827</identifier><identifier>EISSN: 2045-8827</identifier><identifier>DOI: 10.1002/mbo3.573</identifier><identifier>PMID: 29280343</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Antibiotics ; Biological activity ; Biological Transport ; Chemical reactions ; Chromosomes ; Complementation ; Copper ; Copper - metabolism ; Copper chloride ; copper homeostasis ; copper uptake ; Crop fields ; Disruption ; E coli ; Efflux ; Experiments ; Fungicides ; Gene deletion ; Gene disruption ; Gene Expression Profiling ; Gene Knockout Techniques ; Genes ; Genetic Complementation Test ; Genomes ; Genotype & phenotype ; Gram-negative bacteria ; Hypotheses ; Leguminous plants ; Manganese ; Membrane proteins ; Metals ; Nitrogen ; Original Research ; Outer membrane proteins ; Oxidation ; Phenotypes ; Phylogenetics ; Phylogeny ; Plasmids ; Porins ; Porins - genetics ; Porins - metabolism ; Protein interaction ; Protein transport ; Proteins ; Redox reactions ; Rhizobium ; Rhizobium etli - genetics ; Rhizobium etli - metabolism ; RopA ; Sensitivity analysis ; Toxicity ; Transcription</subject><ispartof>MicrobiologyOpen (Weinheim), 2018-06, Vol.7 (3), p.e00573-n/a</ispartof><rights>2017 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4663-af2c2959d41d767e48418ff83faefcedab53fd4d00ebd7747aac739b448af3613</citedby><cites>FETCH-LOGICAL-c4663-af2c2959d41d767e48418ff83faefcedab53fd4d00ebd7747aac739b448af3613</cites><orcidid>0000-0002-3387-9280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6011978/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6011978/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29280343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González‐Sánchez, Antonio</creatorcontrib><creatorcontrib>Cubillas, Ciro A.</creatorcontrib><creatorcontrib>Miranda, Fabiola</creatorcontrib><creatorcontrib>Dávalos, Araceli</creatorcontrib><creatorcontrib>García‐de los Santos, Alejandro</creatorcontrib><title>The ropAe gene encodes a porin‐like protein involved in copper transit in Rhizobium etli CFN42</title><title>MicrobiologyOpen (Weinheim)</title><addtitle>Microbiologyopen</addtitle><description>Copper (Cu) is an essential micronutrient for all aerobic forms of life. Its oxidation states (Cu+/Cu2+) make this metal an important cofactor of enzymes catalyzing redox reactions in essential biological processes. In gram‐negative bacteria, Cu uptake is an unexplored component of a finely regulated trafficking network, mediated by protein–protein interactions that deliver Cu to target proteins and efflux surplus metal to avoid toxicity. Rhizobium etliCFN42 is a facultative symbiotic diazotroph that must ensure its appropriate Cu supply for living either free in the soil or as an intracellular symbiont of leguminous plants. In crop fields, rhizobia have to contend with copper‐based fungicides. A detailed deletion analysis of the pRet42e (505 kb) plasmid from an R. etli mutant with enhanced CuCl2 tolerance led us to the identification of the ropAe gene, predicted to encode an outer membrane protein (OMP) with a β–barrel channel structure that may be involved in Cu transport. In support of this hypothesis, the functional characterization of ropAe revealed that: (I) gene disruption increased copper tolerance of the mutant, and its complementation with the wild‐type gene restored its wild‐type copper sensitivity; (II) the ropAe gene maintains a low basal transcription level in copper overload, but is upregulated when copper is scarce; (III) disruption of ropAe in an actP (copA) mutant background, defective in copper efflux, partially reduced its copper sensitivity phenotype. Finally, BLASTP comparisons and a maximum likelihood phylogenetic analysis highlight the diversification of four RopA paralogs in members of the Rhizobiaceae family. Orthologs of RopAe are highly conserved in the Rhizobiales order, poorly conserved in other alpha proteobacteria and phylogenetically unrelated to characterized porins involved in Cu or Mn uptake.
The copper uptake in gram‐negative bacteria has not been elucidated. In this study, we present the identification and characterization of ropAe a gene from Rhizobium etli CFN42 encoding a porin‐like outer membrane protein involved in copper transit.</description><subject>Antibiotics</subject><subject>Biological activity</subject><subject>Biological Transport</subject><subject>Chemical reactions</subject><subject>Chromosomes</subject><subject>Complementation</subject><subject>Copper</subject><subject>Copper - metabolism</subject><subject>Copper chloride</subject><subject>copper homeostasis</subject><subject>copper uptake</subject><subject>Crop fields</subject><subject>Disruption</subject><subject>E coli</subject><subject>Efflux</subject><subject>Experiments</subject><subject>Fungicides</subject><subject>Gene deletion</subject><subject>Gene disruption</subject><subject>Gene Expression Profiling</subject><subject>Gene Knockout Techniques</subject><subject>Genes</subject><subject>Genetic Complementation Test</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Gram-negative bacteria</subject><subject>Hypotheses</subject><subject>Leguminous plants</subject><subject>Manganese</subject><subject>Membrane proteins</subject><subject>Metals</subject><subject>Nitrogen</subject><subject>Original Research</subject><subject>Outer membrane proteins</subject><subject>Oxidation</subject><subject>Phenotypes</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plasmids</subject><subject>Porins</subject><subject>Porins - genetics</subject><subject>Porins - metabolism</subject><subject>Protein interaction</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Redox reactions</subject><subject>Rhizobium</subject><subject>Rhizobium etli - genetics</subject><subject>Rhizobium etli - metabolism</subject><subject>RopA</subject><subject>Sensitivity analysis</subject><subject>Toxicity</subject><subject>Transcription</subject><issn>2045-8827</issn><issn>2045-8827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1qFTEYhoNYbGkLXoEE3LiZmr-ZZDZCPVgtVAtS1zEz-dKTOpOMycyRuvISvEavpDm01iqYTT6Sh4f340XoKSVHlBD2cuwiP6olf4T2GBF1pRSTjx_Mu-gw5ytSjiSsEfQJ2mUtU4QLvoc-X6wBpzgdA76EABhCHy1kbPAUkw-_fvwc_BfAU4oz-IB92MRhA7YMuI_TBAnPyYTs5-3Lx7X_Hju_jBjmwePVyQfBDtCOM0OGw7t7H306eXOxelednb89XR2fVb1oGl4Zx3rW1q0V1MpGglCCKucUdwZcD9Z0NXdWWEKgs1IKaUwvedsJoYzjDeX76NWtd1q6EWwPoQQb9JT8aNK1jsbrv3-CX-vLuNENobSVqghe3AlS_LpAnvXocw_DYALEJWvaKkrqErYp6PN_0Ku4pFDW04y1RcZow_4I-xRzTuDuw1Cit83pbXO6NFfQZw_D34O_eypAdQt88wNc_1ek378-51vhDe_uo4s</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>González‐Sánchez, Antonio</creator><creator>Cubillas, Ciro A.</creator><creator>Miranda, Fabiola</creator><creator>Dávalos, Araceli</creator><creator>García‐de los Santos, Alejandro</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3387-9280</orcidid></search><sort><creationdate>201806</creationdate><title>The ropAe gene encodes a porin‐like protein involved in copper transit in Rhizobium etli CFN42</title><author>González‐Sánchez, Antonio ; Cubillas, Ciro A. ; Miranda, Fabiola ; Dávalos, Araceli ; García‐de los Santos, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4663-af2c2959d41d767e48418ff83faefcedab53fd4d00ebd7747aac739b448af3613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antibiotics</topic><topic>Biological activity</topic><topic>Biological Transport</topic><topic>Chemical reactions</topic><topic>Chromosomes</topic><topic>Complementation</topic><topic>Copper</topic><topic>Copper - metabolism</topic><topic>Copper chloride</topic><topic>copper homeostasis</topic><topic>copper uptake</topic><topic>Crop fields</topic><topic>Disruption</topic><topic>E coli</topic><topic>Efflux</topic><topic>Experiments</topic><topic>Fungicides</topic><topic>Gene deletion</topic><topic>Gene disruption</topic><topic>Gene Expression Profiling</topic><topic>Gene Knockout Techniques</topic><topic>Genes</topic><topic>Genetic Complementation Test</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Gram-negative bacteria</topic><topic>Hypotheses</topic><topic>Leguminous plants</topic><topic>Manganese</topic><topic>Membrane proteins</topic><topic>Metals</topic><topic>Nitrogen</topic><topic>Original Research</topic><topic>Outer membrane proteins</topic><topic>Oxidation</topic><topic>Phenotypes</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plasmids</topic><topic>Porins</topic><topic>Porins - genetics</topic><topic>Porins - metabolism</topic><topic>Protein interaction</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Redox reactions</topic><topic>Rhizobium</topic><topic>Rhizobium etli - genetics</topic><topic>Rhizobium etli - metabolism</topic><topic>RopA</topic><topic>Sensitivity analysis</topic><topic>Toxicity</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González‐Sánchez, Antonio</creatorcontrib><creatorcontrib>Cubillas, Ciro A.</creatorcontrib><creatorcontrib>Miranda, Fabiola</creatorcontrib><creatorcontrib>Dávalos, Araceli</creatorcontrib><creatorcontrib>García‐de los Santos, Alejandro</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>MicrobiologyOpen (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González‐Sánchez, Antonio</au><au>Cubillas, Ciro A.</au><au>Miranda, Fabiola</au><au>Dávalos, Araceli</au><au>García‐de los Santos, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ropAe gene encodes a porin‐like protein involved in copper transit in Rhizobium etli CFN42</atitle><jtitle>MicrobiologyOpen (Weinheim)</jtitle><addtitle>Microbiologyopen</addtitle><date>2018-06</date><risdate>2018</risdate><volume>7</volume><issue>3</issue><spage>e00573</spage><epage>n/a</epage><pages>e00573-n/a</pages><issn>2045-8827</issn><eissn>2045-8827</eissn><abstract>Copper (Cu) is an essential micronutrient for all aerobic forms of life. Its oxidation states (Cu+/Cu2+) make this metal an important cofactor of enzymes catalyzing redox reactions in essential biological processes. In gram‐negative bacteria, Cu uptake is an unexplored component of a finely regulated trafficking network, mediated by protein–protein interactions that deliver Cu to target proteins and efflux surplus metal to avoid toxicity. Rhizobium etliCFN42 is a facultative symbiotic diazotroph that must ensure its appropriate Cu supply for living either free in the soil or as an intracellular symbiont of leguminous plants. In crop fields, rhizobia have to contend with copper‐based fungicides. A detailed deletion analysis of the pRet42e (505 kb) plasmid from an R. etli mutant with enhanced CuCl2 tolerance led us to the identification of the ropAe gene, predicted to encode an outer membrane protein (OMP) with a β–barrel channel structure that may be involved in Cu transport. In support of this hypothesis, the functional characterization of ropAe revealed that: (I) gene disruption increased copper tolerance of the mutant, and its complementation with the wild‐type gene restored its wild‐type copper sensitivity; (II) the ropAe gene maintains a low basal transcription level in copper overload, but is upregulated when copper is scarce; (III) disruption of ropAe in an actP (copA) mutant background, defective in copper efflux, partially reduced its copper sensitivity phenotype. Finally, BLASTP comparisons and a maximum likelihood phylogenetic analysis highlight the diversification of four RopA paralogs in members of the Rhizobiaceae family. Orthologs of RopAe are highly conserved in the Rhizobiales order, poorly conserved in other alpha proteobacteria and phylogenetically unrelated to characterized porins involved in Cu or Mn uptake.
The copper uptake in gram‐negative bacteria has not been elucidated. In this study, we present the identification and characterization of ropAe a gene from Rhizobium etli CFN42 encoding a porin‐like outer membrane protein involved in copper transit.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>29280343</pmid><doi>10.1002/mbo3.573</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3387-9280</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-8827 |
ispartof | MicrobiologyOpen (Weinheim), 2018-06, Vol.7 (3), p.e00573-n/a |
issn | 2045-8827 2045-8827 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6011978 |
source | MEDLINE; Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Antibiotics Biological activity Biological Transport Chemical reactions Chromosomes Complementation Copper Copper - metabolism Copper chloride copper homeostasis copper uptake Crop fields Disruption E coli Efflux Experiments Fungicides Gene deletion Gene disruption Gene Expression Profiling Gene Knockout Techniques Genes Genetic Complementation Test Genomes Genotype & phenotype Gram-negative bacteria Hypotheses Leguminous plants Manganese Membrane proteins Metals Nitrogen Original Research Outer membrane proteins Oxidation Phenotypes Phylogenetics Phylogeny Plasmids Porins Porins - genetics Porins - metabolism Protein interaction Protein transport Proteins Redox reactions Rhizobium Rhizobium etli - genetics Rhizobium etli - metabolism RopA Sensitivity analysis Toxicity Transcription |
title | The ropAe gene encodes a porin‐like protein involved in copper transit in Rhizobium etli CFN42 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ropAe%20gene%20encodes%20a%20porin%E2%80%90like%20protein%20involved%20in%20copper%20transit%20in%20Rhizobium%20etli%20CFN42&rft.jtitle=MicrobiologyOpen%20(Weinheim)&rft.au=Gonz%C3%A1lez%E2%80%90S%C3%A1nchez,%20Antonio&rft.date=2018-06&rft.volume=7&rft.issue=3&rft.spage=e00573&rft.epage=n/a&rft.pages=e00573-n/a&rft.issn=2045-8827&rft.eissn=2045-8827&rft_id=info:doi/10.1002/mbo3.573&rft_dat=%3Cproquest_pubme%3E2299782162%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299782162&rft_id=info:pmid/29280343&rfr_iscdi=true |