Understanding Signal and Background in a Thermally Resolved, Single-Branched DNA Assay Using Square Wave Voltammetry
Electrochemical bioanalytical sensors with oligonucleotide transducer molecules have been recently extended for quantifying a wide range of biomolecules, from small drugs to large proteins. Short DNA or RNA strands have gained attention recently due to the existence of circulating oligonucleotides i...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2018-03, Vol.90 (5), p.3584-3591 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3591 |
---|---|
container_issue | 5 |
container_start_page | 3584 |
container_title | Analytical chemistry (Washington) |
container_volume | 90 |
creator | Somasundaram, Subramaniam Holtan, Mark D Easley, Christopher J |
description | Electrochemical bioanalytical sensors with oligonucleotide transducer molecules have been recently extended for quantifying a wide range of biomolecules, from small drugs to large proteins. Short DNA or RNA strands have gained attention recently due to the existence of circulating oligonucleotides in human blood, yet challenges remain for adequately sensing these targets at electrode surfaces. In this work, we have developed a quantitative electrochemical method which uses target-induced proximity of a single-branched DNA structure to drive hybridization at an electrode surface, with readout by square-wave voltammetry (SWV). Using custom instrumentation, we first show that precise control of temperature can provide both electrochemical signal amplification and background signal depreciation in SWV readout of small oligonucleotides. Next, we thoroughly compared 25 different combinations of binding energies by their signal-to-background ratios and differences. These data served as a guide to select the optimal parameters of binding energy, SWV frequency, and assay temperature. Finally, the influence of experimental workflow on the sensitivity and limit of detection (LOD) of the sensor is demonstrated. This study highlights the importance of precisely controlling temperature and SWV frequency in DNA-driven assays on electrode surfaces while also presenting a novel instrumental design for fine-tuning of such systems. |
doi_str_mv | 10.1021/acs.analchem.8b00036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6008162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993382256</sourcerecordid><originalsourceid>FETCH-LOGICAL-a547t-6790a7449c6a9828f8d9bd8c8ddfff7647039d1d86b7eb22cdd0cdd6443f5ffb3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EotvCP0DIEhcOzTK2E8e5IG3Lp1SBBF04WpPY2U1xnNZOVtp_j5fdroADHCx77Gdej8cvIc8YzBlw9gqbOEePrlnbfq5qABDyAZmxgkMmleIPyWy3l_ES4IScxngDwBgw-Zic8EqoQuRsRsalNzbEEb3p_Ip-7VZJkqaIXmDzYxWGKS07T5Fer23o0bkt_WLj4DbWnCfcr5zNLgL6VIahbz4t6CJG3NJl_CV3N2Gw9DtuLP02uBH73o5h-4Q8atFF-_Qwn5Hlu7fXlx-yq8_vP14urjIs8nLMZFkBlnleNRIrxVWrTFUb1Shj2rYtZV6CqAwzStalrTlvjIE0ZJ6LtmjbWpyR13vd26nurWmsHwM6fRu6HsNWD9jpP098t9arYaMlgGKSJ4GXB4Ew3E02jrrvYmOdQ2-HKWqe-ik4L9X_UVZVQijOC5nQF3-hN8MUUt-TIHAhKsFBJSrfU00YYgy2PdbNQO8coJMD9L0D9MEBKe35728-Jt1_eQJgD-zSjxf_U_MnJZDBYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023393208</pqid></control><display><type>article</type><title>Understanding Signal and Background in a Thermally Resolved, Single-Branched DNA Assay Using Square Wave Voltammetry</title><source>ACS Publications</source><creator>Somasundaram, Subramaniam ; Holtan, Mark D ; Easley, Christopher J</creator><creatorcontrib>Somasundaram, Subramaniam ; Holtan, Mark D ; Easley, Christopher J</creatorcontrib><description>Electrochemical bioanalytical sensors with oligonucleotide transducer molecules have been recently extended for quantifying a wide range of biomolecules, from small drugs to large proteins. Short DNA or RNA strands have gained attention recently due to the existence of circulating oligonucleotides in human blood, yet challenges remain for adequately sensing these targets at electrode surfaces. In this work, we have developed a quantitative electrochemical method which uses target-induced proximity of a single-branched DNA structure to drive hybridization at an electrode surface, with readout by square-wave voltammetry (SWV). Using custom instrumentation, we first show that precise control of temperature can provide both electrochemical signal amplification and background signal depreciation in SWV readout of small oligonucleotides. Next, we thoroughly compared 25 different combinations of binding energies by their signal-to-background ratios and differences. These data served as a guide to select the optimal parameters of binding energy, SWV frequency, and assay temperature. Finally, the influence of experimental workflow on the sensitivity and limit of detection (LOD) of the sensor is demonstrated. This study highlights the importance of precisely controlling temperature and SWV frequency in DNA-driven assays on electrode surfaces while also presenting a novel instrumental design for fine-tuning of such systems.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b00036</identifier><identifier>PMID: 29385341</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Assaying ; Binding energy ; Biomolecules ; blood ; Blood circulation ; Chemical sensors ; Chemistry ; Control equipment ; Deoxyribonucleic acid ; Depreciation ; detection limit ; DNA ; DNA structure ; drugs ; Electrochemistry ; Electrodes ; energy ; humans ; Hybridization ; Instrumentation ; nucleic acid hybridization ; Oligonucleotides ; Proteins ; Ribonucleic acid ; RNA ; Sensors ; temperature ; Temperature effects ; Voltammetry ; Workflow</subject><ispartof>Analytical chemistry (Washington), 2018-03, Vol.90 (5), p.3584-3591</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 6, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a547t-6790a7449c6a9828f8d9bd8c8ddfff7647039d1d86b7eb22cdd0cdd6443f5ffb3</citedby><cites>FETCH-LOGICAL-a547t-6790a7449c6a9828f8d9bd8c8ddfff7647039d1d86b7eb22cdd0cdd6443f5ffb3</cites><orcidid>0000-0002-2403-4147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b00036$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b00036$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29385341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Somasundaram, Subramaniam</creatorcontrib><creatorcontrib>Holtan, Mark D</creatorcontrib><creatorcontrib>Easley, Christopher J</creatorcontrib><title>Understanding Signal and Background in a Thermally Resolved, Single-Branched DNA Assay Using Square Wave Voltammetry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Electrochemical bioanalytical sensors with oligonucleotide transducer molecules have been recently extended for quantifying a wide range of biomolecules, from small drugs to large proteins. Short DNA or RNA strands have gained attention recently due to the existence of circulating oligonucleotides in human blood, yet challenges remain for adequately sensing these targets at electrode surfaces. In this work, we have developed a quantitative electrochemical method which uses target-induced proximity of a single-branched DNA structure to drive hybridization at an electrode surface, with readout by square-wave voltammetry (SWV). Using custom instrumentation, we first show that precise control of temperature can provide both electrochemical signal amplification and background signal depreciation in SWV readout of small oligonucleotides. Next, we thoroughly compared 25 different combinations of binding energies by their signal-to-background ratios and differences. These data served as a guide to select the optimal parameters of binding energy, SWV frequency, and assay temperature. Finally, the influence of experimental workflow on the sensitivity and limit of detection (LOD) of the sensor is demonstrated. This study highlights the importance of precisely controlling temperature and SWV frequency in DNA-driven assays on electrode surfaces while also presenting a novel instrumental design for fine-tuning of such systems.</description><subject>Analytical chemistry</subject><subject>Assaying</subject><subject>Binding energy</subject><subject>Biomolecules</subject><subject>blood</subject><subject>Blood circulation</subject><subject>Chemical sensors</subject><subject>Chemistry</subject><subject>Control equipment</subject><subject>Deoxyribonucleic acid</subject><subject>Depreciation</subject><subject>detection limit</subject><subject>DNA</subject><subject>DNA structure</subject><subject>drugs</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>energy</subject><subject>humans</subject><subject>Hybridization</subject><subject>Instrumentation</subject><subject>nucleic acid hybridization</subject><subject>Oligonucleotides</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sensors</subject><subject>temperature</subject><subject>Temperature effects</subject><subject>Voltammetry</subject><subject>Workflow</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhi0EotvCP0DIEhcOzTK2E8e5IG3Lp1SBBF04WpPY2U1xnNZOVtp_j5fdroADHCx77Gdej8cvIc8YzBlw9gqbOEePrlnbfq5qABDyAZmxgkMmleIPyWy3l_ES4IScxngDwBgw-Zic8EqoQuRsRsalNzbEEb3p_Ip-7VZJkqaIXmDzYxWGKS07T5Fer23o0bkt_WLj4DbWnCfcr5zNLgL6VIahbz4t6CJG3NJl_CV3N2Gw9DtuLP02uBH73o5h-4Q8atFF-_Qwn5Hlu7fXlx-yq8_vP14urjIs8nLMZFkBlnleNRIrxVWrTFUb1Shj2rYtZV6CqAwzStalrTlvjIE0ZJ6LtmjbWpyR13vd26nurWmsHwM6fRu6HsNWD9jpP098t9arYaMlgGKSJ4GXB4Ew3E02jrrvYmOdQ2-HKWqe-ik4L9X_UVZVQijOC5nQF3-hN8MUUt-TIHAhKsFBJSrfU00YYgy2PdbNQO8coJMD9L0D9MEBKe35728-Jt1_eQJgD-zSjxf_U_MnJZDBYw</recordid><startdate>20180306</startdate><enddate>20180306</enddate><creator>Somasundaram, Subramaniam</creator><creator>Holtan, Mark D</creator><creator>Easley, Christopher J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2403-4147</orcidid></search><sort><creationdate>20180306</creationdate><title>Understanding Signal and Background in a Thermally Resolved, Single-Branched DNA Assay Using Square Wave Voltammetry</title><author>Somasundaram, Subramaniam ; Holtan, Mark D ; Easley, Christopher J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a547t-6790a7449c6a9828f8d9bd8c8ddfff7647039d1d86b7eb22cdd0cdd6443f5ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical chemistry</topic><topic>Assaying</topic><topic>Binding energy</topic><topic>Biomolecules</topic><topic>blood</topic><topic>Blood circulation</topic><topic>Chemical sensors</topic><topic>Chemistry</topic><topic>Control equipment</topic><topic>Deoxyribonucleic acid</topic><topic>Depreciation</topic><topic>detection limit</topic><topic>DNA</topic><topic>DNA structure</topic><topic>drugs</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>energy</topic><topic>humans</topic><topic>Hybridization</topic><topic>Instrumentation</topic><topic>nucleic acid hybridization</topic><topic>Oligonucleotides</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sensors</topic><topic>temperature</topic><topic>Temperature effects</topic><topic>Voltammetry</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somasundaram, Subramaniam</creatorcontrib><creatorcontrib>Holtan, Mark D</creatorcontrib><creatorcontrib>Easley, Christopher J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somasundaram, Subramaniam</au><au>Holtan, Mark D</au><au>Easley, Christopher J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Signal and Background in a Thermally Resolved, Single-Branched DNA Assay Using Square Wave Voltammetry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-03-06</date><risdate>2018</risdate><volume>90</volume><issue>5</issue><spage>3584</spage><epage>3591</epage><pages>3584-3591</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Electrochemical bioanalytical sensors with oligonucleotide transducer molecules have been recently extended for quantifying a wide range of biomolecules, from small drugs to large proteins. Short DNA or RNA strands have gained attention recently due to the existence of circulating oligonucleotides in human blood, yet challenges remain for adequately sensing these targets at electrode surfaces. In this work, we have developed a quantitative electrochemical method which uses target-induced proximity of a single-branched DNA structure to drive hybridization at an electrode surface, with readout by square-wave voltammetry (SWV). Using custom instrumentation, we first show that precise control of temperature can provide both electrochemical signal amplification and background signal depreciation in SWV readout of small oligonucleotides. Next, we thoroughly compared 25 different combinations of binding energies by their signal-to-background ratios and differences. These data served as a guide to select the optimal parameters of binding energy, SWV frequency, and assay temperature. Finally, the influence of experimental workflow on the sensitivity and limit of detection (LOD) of the sensor is demonstrated. This study highlights the importance of precisely controlling temperature and SWV frequency in DNA-driven assays on electrode surfaces while also presenting a novel instrumental design for fine-tuning of such systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29385341</pmid><doi>10.1021/acs.analchem.8b00036</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2403-4147</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2018-03, Vol.90 (5), p.3584-3591 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6008162 |
source | ACS Publications |
subjects | Analytical chemistry Assaying Binding energy Biomolecules blood Blood circulation Chemical sensors Chemistry Control equipment Deoxyribonucleic acid Depreciation detection limit DNA DNA structure drugs Electrochemistry Electrodes energy humans Hybridization Instrumentation nucleic acid hybridization Oligonucleotides Proteins Ribonucleic acid RNA Sensors temperature Temperature effects Voltammetry Workflow |
title | Understanding Signal and Background in a Thermally Resolved, Single-Branched DNA Assay Using Square Wave Voltammetry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Signal%20and%20Background%20in%20a%20Thermally%20Resolved,%20Single-Branched%20DNA%20Assay%20Using%20Square%20Wave%20Voltammetry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Somasundaram,%20Subramaniam&rft.date=2018-03-06&rft.volume=90&rft.issue=5&rft.spage=3584&rft.epage=3591&rft.pages=3584-3591&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b00036&rft_dat=%3Cproquest_pubme%3E1993382256%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2023393208&rft_id=info:pmid/29385341&rfr_iscdi=true |