Reducing resistance allele formation in CRISPR gene drive

CRISPR homing gene drives can convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. Such a mechanism could be used, for example, to rapidly disseminate a genetic payload in a population, promising effective strategies for the con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-05, Vol.115 (21), p.5522-5527
Hauptverfasser: Champer, Jackson, Liu, Jingxian, Oh, Suh Yeon, Reeves, Riona, Luthra, Anisha, Oakes, Nathan, Clark, Andrew G., Messer, Philipp W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5527
container_issue 21
container_start_page 5522
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Champer, Jackson
Liu, Jingxian
Oh, Suh Yeon
Reeves, Riona
Luthra, Anisha
Oakes, Nathan
Clark, Andrew G.
Messer, Philipp W.
description CRISPR homing gene drives can convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. Such a mechanism could be used, for example, to rapidly disseminate a genetic payload in a population, promising effective strategies for the control of vector-borne diseases. However, all CRISPR homing gene drives studied in insects thus far have produced significant quantities of resistance alleles that would limit their spread. In this study, we provide an experimental demonstration that multiplexing of guide RNAs can both significantly increase the drive conversion efficiency and reduce germline resistance rates of a CRISPR homing gene drive in Drosophila melanogaster. We further show that an autosomal drive can achieve drive conversion in the male germline, with no subsequent formation of resistance alleles in embryos through paternal carryover of Cas9. Finally, we find that the nanos promoter significantly lowers somatic Cas9 expression compared with the vasa promoter, suggesting that nanos provides a superior choice in drive strategies where gene disruption in somatic cells could have fitness costs. Comparison of drive parameters among the different constructs developed in this study and a previous study suggests that, while drive conversion and germline resistance rates are similar between different genomic targets, embryo resistance rates can vary significantly. Taken together, our results mark an important step toward developing effective gene drives capable of functioning in natural populations and provide several possible avenues for further control of resistance rates.
doi_str_mv 10.1073/pnas.1720354115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26509854</jstor_id><sourcerecordid>26509854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-4543608efc17f5d9d0a5b4ba5dac1c10382fd974807c9b18500cb3d0b574b32d3</originalsourceid><addsrcrecordid>eNpdkctLxDAQxoMouj7OnpSCFy_VSZs0zUWQxRcIyqrnkCbpmqWbrEm74H9vlvV9GOYwv_mY-T6EDjGcYWDl-cLJeIZZASUlGNMNNMLAcV4RDptoBFCwvCYF2UG7Mc4AgNMattFOwVlJGa5GiE-MHpR10yyYaGMvnTKZ7DrTmaz1YS57611mXTae3D09TrKpcSbTwS7NPtpqZRfNwWffQy_XV8_j2_z-4eZufHmfKwq8zwklZQW1aRVmLdVcg6QNaSTVUmGFoayLVnNGamCKN7imAKopNTSUkaYsdLmHLta6i6GZG62M64PsxCLYuQzvwksr_k6cfRVTvxQVJFcwTwKnnwLBvw0m9mJuozJdJ53xQxTJvGpVvEjoyT905ofg0nuiwAB1OpJViTpfUyr4GINpv4_BIFaxiFUs4ieWtHH8-4dv_iuHBBytgVnsffiZV8nDOjn4AU9ZkaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100880776</pqid></control><display><type>article</type><title>Reducing resistance allele formation in CRISPR gene drive</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Champer, Jackson ; Liu, Jingxian ; Oh, Suh Yeon ; Reeves, Riona ; Luthra, Anisha ; Oakes, Nathan ; Clark, Andrew G. ; Messer, Philipp W.</creator><creatorcontrib>Champer, Jackson ; Liu, Jingxian ; Oh, Suh Yeon ; Reeves, Riona ; Luthra, Anisha ; Oakes, Nathan ; Clark, Andrew G. ; Messer, Philipp W.</creatorcontrib><description>CRISPR homing gene drives can convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. Such a mechanism could be used, for example, to rapidly disseminate a genetic payload in a population, promising effective strategies for the control of vector-borne diseases. However, all CRISPR homing gene drives studied in insects thus far have produced significant quantities of resistance alleles that would limit their spread. In this study, we provide an experimental demonstration that multiplexing of guide RNAs can both significantly increase the drive conversion efficiency and reduce germline resistance rates of a CRISPR homing gene drive in Drosophila melanogaster. We further show that an autosomal drive can achieve drive conversion in the male germline, with no subsequent formation of resistance alleles in embryos through paternal carryover of Cas9. Finally, we find that the nanos promoter significantly lowers somatic Cas9 expression compared with the vasa promoter, suggesting that nanos provides a superior choice in drive strategies where gene disruption in somatic cells could have fitness costs. Comparison of drive parameters among the different constructs developed in this study and a previous study suggests that, while drive conversion and germline resistance rates are similar between different genomic targets, embryo resistance rates can vary significantly. Taken together, our results mark an important step toward developing effective gene drives capable of functioning in natural populations and provide several possible avenues for further control of resistance rates.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1720354115</identifier><identifier>PMID: 29735716</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Animals ; Biological Sciences ; Conversion ; CRISPR ; CRISPR-Cas Systems - genetics ; Disease Resistance - genetics ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Embryology ; Embryos ; Fitness ; Fruit flies ; Gene disruption ; Gene Drive Technology ; Gene expression ; Genetic engineering ; Genetics, Population ; Germ Cells ; Heredity ; Homing ; Homozygotes ; Insects ; Multiplexing ; Mutation ; Natural populations ; Population genetics ; Reproductive fitness ; Ribonucleic acid ; RNA ; RNA, Guide, CRISPR-Cas Systems - genetics ; RNA-Binding Proteins ; Somatic cells ; Vector-borne diseases</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-05, Vol.115 (21), p.5522-5527</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences May 22, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-4543608efc17f5d9d0a5b4ba5dac1c10382fd974807c9b18500cb3d0b574b32d3</citedby><cites>FETCH-LOGICAL-c509t-4543608efc17f5d9d0a5b4ba5dac1c10382fd974807c9b18500cb3d0b574b32d3</cites><orcidid>0000-0001-8453-9377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26509854$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26509854$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29735716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Champer, Jackson</creatorcontrib><creatorcontrib>Liu, Jingxian</creatorcontrib><creatorcontrib>Oh, Suh Yeon</creatorcontrib><creatorcontrib>Reeves, Riona</creatorcontrib><creatorcontrib>Luthra, Anisha</creatorcontrib><creatorcontrib>Oakes, Nathan</creatorcontrib><creatorcontrib>Clark, Andrew G.</creatorcontrib><creatorcontrib>Messer, Philipp W.</creatorcontrib><title>Reducing resistance allele formation in CRISPR gene drive</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>CRISPR homing gene drives can convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. Such a mechanism could be used, for example, to rapidly disseminate a genetic payload in a population, promising effective strategies for the control of vector-borne diseases. However, all CRISPR homing gene drives studied in insects thus far have produced significant quantities of resistance alleles that would limit their spread. In this study, we provide an experimental demonstration that multiplexing of guide RNAs can both significantly increase the drive conversion efficiency and reduce germline resistance rates of a CRISPR homing gene drive in Drosophila melanogaster. We further show that an autosomal drive can achieve drive conversion in the male germline, with no subsequent formation of resistance alleles in embryos through paternal carryover of Cas9. Finally, we find that the nanos promoter significantly lowers somatic Cas9 expression compared with the vasa promoter, suggesting that nanos provides a superior choice in drive strategies where gene disruption in somatic cells could have fitness costs. Comparison of drive parameters among the different constructs developed in this study and a previous study suggests that, while drive conversion and germline resistance rates are similar between different genomic targets, embryo resistance rates can vary significantly. Taken together, our results mark an important step toward developing effective gene drives capable of functioning in natural populations and provide several possible avenues for further control of resistance rates.</description><subject>Alleles</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Conversion</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Disease Resistance - genetics</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Embryology</subject><subject>Embryos</subject><subject>Fitness</subject><subject>Fruit flies</subject><subject>Gene disruption</subject><subject>Gene Drive Technology</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Genetics, Population</subject><subject>Germ Cells</subject><subject>Heredity</subject><subject>Homing</subject><subject>Homozygotes</subject><subject>Insects</subject><subject>Multiplexing</subject><subject>Mutation</subject><subject>Natural populations</subject><subject>Population genetics</subject><subject>Reproductive fitness</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>RNA-Binding Proteins</subject><subject>Somatic cells</subject><subject>Vector-borne diseases</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLxDAQxoMouj7OnpSCFy_VSZs0zUWQxRcIyqrnkCbpmqWbrEm74H9vlvV9GOYwv_mY-T6EDjGcYWDl-cLJeIZZASUlGNMNNMLAcV4RDptoBFCwvCYF2UG7Mc4AgNMattFOwVlJGa5GiE-MHpR10yyYaGMvnTKZ7DrTmaz1YS57611mXTae3D09TrKpcSbTwS7NPtpqZRfNwWffQy_XV8_j2_z-4eZufHmfKwq8zwklZQW1aRVmLdVcg6QNaSTVUmGFoayLVnNGamCKN7imAKopNTSUkaYsdLmHLta6i6GZG62M64PsxCLYuQzvwksr_k6cfRVTvxQVJFcwTwKnnwLBvw0m9mJuozJdJ53xQxTJvGpVvEjoyT905ofg0nuiwAB1OpJViTpfUyr4GINpv4_BIFaxiFUs4ieWtHH8-4dv_iuHBBytgVnsffiZV8nDOjn4AU9ZkaA</recordid><startdate>20180522</startdate><enddate>20180522</enddate><creator>Champer, Jackson</creator><creator>Liu, Jingxian</creator><creator>Oh, Suh Yeon</creator><creator>Reeves, Riona</creator><creator>Luthra, Anisha</creator><creator>Oakes, Nathan</creator><creator>Clark, Andrew G.</creator><creator>Messer, Philipp W.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8453-9377</orcidid></search><sort><creationdate>20180522</creationdate><title>Reducing resistance allele formation in CRISPR gene drive</title><author>Champer, Jackson ; Liu, Jingxian ; Oh, Suh Yeon ; Reeves, Riona ; Luthra, Anisha ; Oakes, Nathan ; Clark, Andrew G. ; Messer, Philipp W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-4543608efc17f5d9d0a5b4ba5dac1c10382fd974807c9b18500cb3d0b574b32d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Conversion</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Disease Resistance - genetics</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Embryology</topic><topic>Embryos</topic><topic>Fitness</topic><topic>Fruit flies</topic><topic>Gene disruption</topic><topic>Gene Drive Technology</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Genetics, Population</topic><topic>Germ Cells</topic><topic>Heredity</topic><topic>Homing</topic><topic>Homozygotes</topic><topic>Insects</topic><topic>Multiplexing</topic><topic>Mutation</topic><topic>Natural populations</topic><topic>Population genetics</topic><topic>Reproductive fitness</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>RNA-Binding Proteins</topic><topic>Somatic cells</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Champer, Jackson</creatorcontrib><creatorcontrib>Liu, Jingxian</creatorcontrib><creatorcontrib>Oh, Suh Yeon</creatorcontrib><creatorcontrib>Reeves, Riona</creatorcontrib><creatorcontrib>Luthra, Anisha</creatorcontrib><creatorcontrib>Oakes, Nathan</creatorcontrib><creatorcontrib>Clark, Andrew G.</creatorcontrib><creatorcontrib>Messer, Philipp W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Champer, Jackson</au><au>Liu, Jingxian</au><au>Oh, Suh Yeon</au><au>Reeves, Riona</au><au>Luthra, Anisha</au><au>Oakes, Nathan</au><au>Clark, Andrew G.</au><au>Messer, Philipp W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing resistance allele formation in CRISPR gene drive</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-05-22</date><risdate>2018</risdate><volume>115</volume><issue>21</issue><spage>5522</spage><epage>5527</epage><pages>5522-5527</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>CRISPR homing gene drives can convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. Such a mechanism could be used, for example, to rapidly disseminate a genetic payload in a population, promising effective strategies for the control of vector-borne diseases. However, all CRISPR homing gene drives studied in insects thus far have produced significant quantities of resistance alleles that would limit their spread. In this study, we provide an experimental demonstration that multiplexing of guide RNAs can both significantly increase the drive conversion efficiency and reduce germline resistance rates of a CRISPR homing gene drive in Drosophila melanogaster. We further show that an autosomal drive can achieve drive conversion in the male germline, with no subsequent formation of resistance alleles in embryos through paternal carryover of Cas9. Finally, we find that the nanos promoter significantly lowers somatic Cas9 expression compared with the vasa promoter, suggesting that nanos provides a superior choice in drive strategies where gene disruption in somatic cells could have fitness costs. Comparison of drive parameters among the different constructs developed in this study and a previous study suggests that, while drive conversion and germline resistance rates are similar between different genomic targets, embryo resistance rates can vary significantly. Taken together, our results mark an important step toward developing effective gene drives capable of functioning in natural populations and provide several possible avenues for further control of resistance rates.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29735716</pmid><doi>10.1073/pnas.1720354115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8453-9377</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-05, Vol.115 (21), p.5522-5527
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003519
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Animals
Biological Sciences
Conversion
CRISPR
CRISPR-Cas Systems - genetics
Disease Resistance - genetics
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Embryology
Embryos
Fitness
Fruit flies
Gene disruption
Gene Drive Technology
Gene expression
Genetic engineering
Genetics, Population
Germ Cells
Heredity
Homing
Homozygotes
Insects
Multiplexing
Mutation
Natural populations
Population genetics
Reproductive fitness
Ribonucleic acid
RNA
RNA, Guide, CRISPR-Cas Systems - genetics
RNA-Binding Proteins
Somatic cells
Vector-borne diseases
title Reducing resistance allele formation in CRISPR gene drive
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20resistance%20allele%20formation%20in%20CRISPR%20gene%20drive&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Champer,%20Jackson&rft.date=2018-05-22&rft.volume=115&rft.issue=21&rft.spage=5522&rft.epage=5527&rft.pages=5522-5527&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1720354115&rft_dat=%3Cjstor_pubme%3E26509854%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100880776&rft_id=info:pmid/29735716&rft_jstor_id=26509854&rfr_iscdi=true