Reducing resistance allele formation in CRISPR gene drive
CRISPR homing gene drives can convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. Such a mechanism could be used, for example, to rapidly disseminate a genetic payload in a population, promising effective strategies for the con...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2018-05, Vol.115 (21), p.5522-5527 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5527 |
---|---|
container_issue | 21 |
container_start_page | 5522 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 115 |
creator | Champer, Jackson Liu, Jingxian Oh, Suh Yeon Reeves, Riona Luthra, Anisha Oakes, Nathan Clark, Andrew G. Messer, Philipp W. |
description | CRISPR homing gene drives can convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. Such a mechanism could be used, for example, to rapidly disseminate a genetic payload in a population, promising effective strategies for the control of vector-borne diseases. However, all CRISPR homing gene drives studied in insects thus far have produced significant quantities of resistance alleles that would limit their spread. In this study, we provide an experimental demonstration that multiplexing of guide RNAs can both significantly increase the drive conversion efficiency and reduce germline resistance rates of a CRISPR homing gene drive in Drosophila melanogaster. We further show that an autosomal drive can achieve drive conversion in the male germline, with no subsequent formation of resistance alleles in embryos through paternal carryover of Cas9. Finally, we find that the nanos promoter significantly lowers somatic Cas9 expression compared with the vasa promoter, suggesting that nanos provides a superior choice in drive strategies where gene disruption in somatic cells could have fitness costs. Comparison of drive parameters among the different constructs developed in this study and a previous study suggests that, while drive conversion and germline resistance rates are similar between different genomic targets, embryo resistance rates can vary significantly. Taken together, our results mark an important step toward developing effective gene drives capable of functioning in natural populations and provide several possible avenues for further control of resistance rates. |
doi_str_mv | 10.1073/pnas.1720354115 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26509854</jstor_id><sourcerecordid>26509854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-4543608efc17f5d9d0a5b4ba5dac1c10382fd974807c9b18500cb3d0b574b32d3</originalsourceid><addsrcrecordid>eNpdkctLxDAQxoMouj7OnpSCFy_VSZs0zUWQxRcIyqrnkCbpmqWbrEm74H9vlvV9GOYwv_mY-T6EDjGcYWDl-cLJeIZZASUlGNMNNMLAcV4RDptoBFCwvCYF2UG7Mc4AgNMattFOwVlJGa5GiE-MHpR10yyYaGMvnTKZ7DrTmaz1YS57611mXTae3D09TrKpcSbTwS7NPtpqZRfNwWffQy_XV8_j2_z-4eZufHmfKwq8zwklZQW1aRVmLdVcg6QNaSTVUmGFoayLVnNGamCKN7imAKopNTSUkaYsdLmHLta6i6GZG62M64PsxCLYuQzvwksr_k6cfRVTvxQVJFcwTwKnnwLBvw0m9mJuozJdJ53xQxTJvGpVvEjoyT905ofg0nuiwAB1OpJViTpfUyr4GINpv4_BIFaxiFUs4ieWtHH8-4dv_iuHBBytgVnsffiZV8nDOjn4AU9ZkaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100880776</pqid></control><display><type>article</type><title>Reducing resistance allele formation in CRISPR gene drive</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Champer, Jackson ; Liu, Jingxian ; Oh, Suh Yeon ; Reeves, Riona ; Luthra, Anisha ; Oakes, Nathan ; Clark, Andrew G. ; Messer, Philipp W.</creator><creatorcontrib>Champer, Jackson ; Liu, Jingxian ; Oh, Suh Yeon ; Reeves, Riona ; Luthra, Anisha ; Oakes, Nathan ; Clark, Andrew G. ; Messer, Philipp W.</creatorcontrib><description>CRISPR homing gene drives can convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. Such a mechanism could be used, for example, to rapidly disseminate a genetic payload in a population, promising effective strategies for the control of vector-borne diseases. However, all CRISPR homing gene drives studied in insects thus far have produced significant quantities of resistance alleles that would limit their spread. In this study, we provide an experimental demonstration that multiplexing of guide RNAs can both significantly increase the drive conversion efficiency and reduce germline resistance rates of a CRISPR homing gene drive in Drosophila melanogaster. We further show that an autosomal drive can achieve drive conversion in the male germline, with no subsequent formation of resistance alleles in embryos through paternal carryover of Cas9. Finally, we find that the nanos promoter significantly lowers somatic Cas9 expression compared with the vasa promoter, suggesting that nanos provides a superior choice in drive strategies where gene disruption in somatic cells could have fitness costs. Comparison of drive parameters among the different constructs developed in this study and a previous study suggests that, while drive conversion and germline resistance rates are similar between different genomic targets, embryo resistance rates can vary significantly. Taken together, our results mark an important step toward developing effective gene drives capable of functioning in natural populations and provide several possible avenues for further control of resistance rates.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1720354115</identifier><identifier>PMID: 29735716</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Animals ; Biological Sciences ; Conversion ; CRISPR ; CRISPR-Cas Systems - genetics ; Disease Resistance - genetics ; Drosophila melanogaster - genetics ; Drosophila Proteins - genetics ; Embryology ; Embryos ; Fitness ; Fruit flies ; Gene disruption ; Gene Drive Technology ; Gene expression ; Genetic engineering ; Genetics, Population ; Germ Cells ; Heredity ; Homing ; Homozygotes ; Insects ; Multiplexing ; Mutation ; Natural populations ; Population genetics ; Reproductive fitness ; Ribonucleic acid ; RNA ; RNA, Guide, CRISPR-Cas Systems - genetics ; RNA-Binding Proteins ; Somatic cells ; Vector-borne diseases</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-05, Vol.115 (21), p.5522-5527</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences May 22, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-4543608efc17f5d9d0a5b4ba5dac1c10382fd974807c9b18500cb3d0b574b32d3</citedby><cites>FETCH-LOGICAL-c509t-4543608efc17f5d9d0a5b4ba5dac1c10382fd974807c9b18500cb3d0b574b32d3</cites><orcidid>0000-0001-8453-9377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26509854$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26509854$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29735716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Champer, Jackson</creatorcontrib><creatorcontrib>Liu, Jingxian</creatorcontrib><creatorcontrib>Oh, Suh Yeon</creatorcontrib><creatorcontrib>Reeves, Riona</creatorcontrib><creatorcontrib>Luthra, Anisha</creatorcontrib><creatorcontrib>Oakes, Nathan</creatorcontrib><creatorcontrib>Clark, Andrew G.</creatorcontrib><creatorcontrib>Messer, Philipp W.</creatorcontrib><title>Reducing resistance allele formation in CRISPR gene drive</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>CRISPR homing gene drives can convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. Such a mechanism could be used, for example, to rapidly disseminate a genetic payload in a population, promising effective strategies for the control of vector-borne diseases. However, all CRISPR homing gene drives studied in insects thus far have produced significant quantities of resistance alleles that would limit their spread. In this study, we provide an experimental demonstration that multiplexing of guide RNAs can both significantly increase the drive conversion efficiency and reduce germline resistance rates of a CRISPR homing gene drive in Drosophila melanogaster. We further show that an autosomal drive can achieve drive conversion in the male germline, with no subsequent formation of resistance alleles in embryos through paternal carryover of Cas9. Finally, we find that the nanos promoter significantly lowers somatic Cas9 expression compared with the vasa promoter, suggesting that nanos provides a superior choice in drive strategies where gene disruption in somatic cells could have fitness costs. Comparison of drive parameters among the different constructs developed in this study and a previous study suggests that, while drive conversion and germline resistance rates are similar between different genomic targets, embryo resistance rates can vary significantly. Taken together, our results mark an important step toward developing effective gene drives capable of functioning in natural populations and provide several possible avenues for further control of resistance rates.</description><subject>Alleles</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Conversion</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Disease Resistance - genetics</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Embryology</subject><subject>Embryos</subject><subject>Fitness</subject><subject>Fruit flies</subject><subject>Gene disruption</subject><subject>Gene Drive Technology</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Genetics, Population</subject><subject>Germ Cells</subject><subject>Heredity</subject><subject>Homing</subject><subject>Homozygotes</subject><subject>Insects</subject><subject>Multiplexing</subject><subject>Mutation</subject><subject>Natural populations</subject><subject>Population genetics</subject><subject>Reproductive fitness</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>RNA-Binding Proteins</subject><subject>Somatic cells</subject><subject>Vector-borne diseases</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLxDAQxoMouj7OnpSCFy_VSZs0zUWQxRcIyqrnkCbpmqWbrEm74H9vlvV9GOYwv_mY-T6EDjGcYWDl-cLJeIZZASUlGNMNNMLAcV4RDptoBFCwvCYF2UG7Mc4AgNMattFOwVlJGa5GiE-MHpR10yyYaGMvnTKZ7DrTmaz1YS57611mXTae3D09TrKpcSbTwS7NPtpqZRfNwWffQy_XV8_j2_z-4eZufHmfKwq8zwklZQW1aRVmLdVcg6QNaSTVUmGFoayLVnNGamCKN7imAKopNTSUkaYsdLmHLta6i6GZG62M64PsxCLYuQzvwksr_k6cfRVTvxQVJFcwTwKnnwLBvw0m9mJuozJdJ53xQxTJvGpVvEjoyT905ofg0nuiwAB1OpJViTpfUyr4GINpv4_BIFaxiFUs4ieWtHH8-4dv_iuHBBytgVnsffiZV8nDOjn4AU9ZkaA</recordid><startdate>20180522</startdate><enddate>20180522</enddate><creator>Champer, Jackson</creator><creator>Liu, Jingxian</creator><creator>Oh, Suh Yeon</creator><creator>Reeves, Riona</creator><creator>Luthra, Anisha</creator><creator>Oakes, Nathan</creator><creator>Clark, Andrew G.</creator><creator>Messer, Philipp W.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8453-9377</orcidid></search><sort><creationdate>20180522</creationdate><title>Reducing resistance allele formation in CRISPR gene drive</title><author>Champer, Jackson ; Liu, Jingxian ; Oh, Suh Yeon ; Reeves, Riona ; Luthra, Anisha ; Oakes, Nathan ; Clark, Andrew G. ; Messer, Philipp W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-4543608efc17f5d9d0a5b4ba5dac1c10382fd974807c9b18500cb3d0b574b32d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Conversion</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Disease Resistance - genetics</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Embryology</topic><topic>Embryos</topic><topic>Fitness</topic><topic>Fruit flies</topic><topic>Gene disruption</topic><topic>Gene Drive Technology</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Genetics, Population</topic><topic>Germ Cells</topic><topic>Heredity</topic><topic>Homing</topic><topic>Homozygotes</topic><topic>Insects</topic><topic>Multiplexing</topic><topic>Mutation</topic><topic>Natural populations</topic><topic>Population genetics</topic><topic>Reproductive fitness</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>RNA-Binding Proteins</topic><topic>Somatic cells</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Champer, Jackson</creatorcontrib><creatorcontrib>Liu, Jingxian</creatorcontrib><creatorcontrib>Oh, Suh Yeon</creatorcontrib><creatorcontrib>Reeves, Riona</creatorcontrib><creatorcontrib>Luthra, Anisha</creatorcontrib><creatorcontrib>Oakes, Nathan</creatorcontrib><creatorcontrib>Clark, Andrew G.</creatorcontrib><creatorcontrib>Messer, Philipp W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Champer, Jackson</au><au>Liu, Jingxian</au><au>Oh, Suh Yeon</au><au>Reeves, Riona</au><au>Luthra, Anisha</au><au>Oakes, Nathan</au><au>Clark, Andrew G.</au><au>Messer, Philipp W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing resistance allele formation in CRISPR gene drive</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-05-22</date><risdate>2018</risdate><volume>115</volume><issue>21</issue><spage>5522</spage><epage>5527</epage><pages>5522-5527</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>CRISPR homing gene drives can convert heterozygous cells with one copy of the drive allele into homozygotes, thereby enabling super-Mendelian inheritance. Such a mechanism could be used, for example, to rapidly disseminate a genetic payload in a population, promising effective strategies for the control of vector-borne diseases. However, all CRISPR homing gene drives studied in insects thus far have produced significant quantities of resistance alleles that would limit their spread. In this study, we provide an experimental demonstration that multiplexing of guide RNAs can both significantly increase the drive conversion efficiency and reduce germline resistance rates of a CRISPR homing gene drive in Drosophila melanogaster. We further show that an autosomal drive can achieve drive conversion in the male germline, with no subsequent formation of resistance alleles in embryos through paternal carryover of Cas9. Finally, we find that the nanos promoter significantly lowers somatic Cas9 expression compared with the vasa promoter, suggesting that nanos provides a superior choice in drive strategies where gene disruption in somatic cells could have fitness costs. Comparison of drive parameters among the different constructs developed in this study and a previous study suggests that, while drive conversion and germline resistance rates are similar between different genomic targets, embryo resistance rates can vary significantly. Taken together, our results mark an important step toward developing effective gene drives capable of functioning in natural populations and provide several possible avenues for further control of resistance rates.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29735716</pmid><doi>10.1073/pnas.1720354115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8453-9377</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2018-05, Vol.115 (21), p.5522-5527 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003519 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alleles Animals Biological Sciences Conversion CRISPR CRISPR-Cas Systems - genetics Disease Resistance - genetics Drosophila melanogaster - genetics Drosophila Proteins - genetics Embryology Embryos Fitness Fruit flies Gene disruption Gene Drive Technology Gene expression Genetic engineering Genetics, Population Germ Cells Heredity Homing Homozygotes Insects Multiplexing Mutation Natural populations Population genetics Reproductive fitness Ribonucleic acid RNA RNA, Guide, CRISPR-Cas Systems - genetics RNA-Binding Proteins Somatic cells Vector-borne diseases |
title | Reducing resistance allele formation in CRISPR gene drive |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20resistance%20allele%20formation%20in%20CRISPR%20gene%20drive&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Champer,%20Jackson&rft.date=2018-05-22&rft.volume=115&rft.issue=21&rft.spage=5522&rft.epage=5527&rft.pages=5522-5527&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1720354115&rft_dat=%3Cjstor_pubme%3E26509854%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100880776&rft_id=info:pmid/29735716&rft_jstor_id=26509854&rfr_iscdi=true |