Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia

The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2018-05, Vol.173 (6), p.1439-1453.e19
Hauptverfasser: Kim, Miriam Y., Yu, Kyung-Rok, Kenderian, Saad S., Ruella, Marco, Chen, Shirley, Shin, Tae-Hoon, Aljanahi, Aisha A., Schreeder, Daniel, Klichinsky, Michael, Shestova, Olga, Kozlowski, Miroslaw S., Cummins, Katherine D., Shan, Xinhe, Shestov, Maksim, Bagg, Adam, Morrissette, Jennifer J.D., Sekhri, Palak, Lazzarotto, Cicera R., Calvo, Katherine R., Kuhns, Douglas B., Donahue, Robert E., Behbehani, Gregory K., Tsai, Shengdar Q., Dunbar, Cynthia E., Gill, Saar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1453.e19
container_issue 6
container_start_page 1439
container_title Cell
container_volume 173
creator Kim, Miriam Y.
Yu, Kyung-Rok
Kenderian, Saad S.
Ruella, Marco
Chen, Shirley
Shin, Tae-Hoon
Aljanahi, Aisha A.
Schreeder, Daniel
Klichinsky, Michael
Shestova, Olga
Kozlowski, Miroslaw S.
Cummins, Katherine D.
Shan, Xinhe
Shestov, Maksim
Bagg, Adam
Morrissette, Jennifer J.D.
Sekhri, Palak
Lazzarotto, Cicera R.
Calvo, Katherine R.
Kuhns, Douglas B.
Donahue, Robert E.
Behbehani, Gregory K.
Tsai, Shengdar Q.
Dunbar, Cynthia E.
Gill, Saar
description The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity. [Display omitted] •CD33 is not required for human myeloid development and function•CD33-deficient non-human primate myeloid cells are fully functional•Anti-CD33 CAR T cells can eradicate AML while sparing CD33-deficient hematopoiesis•This is a synthetic biology approach to generating a leukemia-specific antigen Reconstitution of the immune system with CD33-negative human hematopoietic stem cells enables anti-CD33 CAR-T cell killing of acute myeloid leukemia while sparing myeloid development and function.
doi_str_mv 10.1016/j.cell.2018.05.013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867418305907</els_id><sourcerecordid>2049560845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-a781b079c7f4cc7df9ea8f70711bb85f42e9061b7cea6ece12713bc7e04ce8073</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhD3BAPnJJGCdx7EgIaZWWdqVFSFDOluNMqJckXmxnpf33JN22Khc4WRp_7439HiFvGaQMWPlhlxrs-zQDJlPgKbD8GVkxqERSMJE9JyuAKktkKYoz8iqEHQBIzvlLcpZVkpcVL1fkcIUjRmvoZtQm2oOO1o3UdbS-yHNqR3qNg45u7-wd9T3iQOt5a6DR0ctRNz3Sev2N3txN6WYYptHFW_R6f6Sd83Rtpoj0yxF7Z1u6xekXDla_Ji863Qd8c3-ekx-fL2_q62T79WpTr7eJ4bmIiRaSNSAqI7rCGNF2FWrZCRCMNY3kXZFhBSVrhEFdokGWCZY3RiAUBiWI_Jx8Ovnup2bA1uAYve7V3ttB-6Ny2qq_b0Z7q366gyoB8iLjs8H7ewPvfk8YohpsWGLXI7opqIzlTApeyOr_KBRz5CCLxTU7oca7EDx2jy9ioJZu1U4tSrV0q4CrudtZ9O7pXx4lD2XOwMcTgHOiB4teBWNxNNhajyaq1tl_-f8BvBu2Pg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049560845</pqid></control><display><type>article</type><title>Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kim, Miriam Y. ; Yu, Kyung-Rok ; Kenderian, Saad S. ; Ruella, Marco ; Chen, Shirley ; Shin, Tae-Hoon ; Aljanahi, Aisha A. ; Schreeder, Daniel ; Klichinsky, Michael ; Shestova, Olga ; Kozlowski, Miroslaw S. ; Cummins, Katherine D. ; Shan, Xinhe ; Shestov, Maksim ; Bagg, Adam ; Morrissette, Jennifer J.D. ; Sekhri, Palak ; Lazzarotto, Cicera R. ; Calvo, Katherine R. ; Kuhns, Douglas B. ; Donahue, Robert E. ; Behbehani, Gregory K. ; Tsai, Shengdar Q. ; Dunbar, Cynthia E. ; Gill, Saar</creator><creatorcontrib>Kim, Miriam Y. ; Yu, Kyung-Rok ; Kenderian, Saad S. ; Ruella, Marco ; Chen, Shirley ; Shin, Tae-Hoon ; Aljanahi, Aisha A. ; Schreeder, Daniel ; Klichinsky, Michael ; Shestova, Olga ; Kozlowski, Miroslaw S. ; Cummins, Katherine D. ; Shan, Xinhe ; Shestov, Maksim ; Bagg, Adam ; Morrissette, Jennifer J.D. ; Sekhri, Palak ; Lazzarotto, Cicera R. ; Calvo, Katherine R. ; Kuhns, Douglas B. ; Donahue, Robert E. ; Behbehani, Gregory K. ; Tsai, Shengdar Q. ; Dunbar, Cynthia E. ; Gill, Saar</creatorcontrib><description>The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity. [Display omitted] •CD33 is not required for human myeloid development and function•CD33-deficient non-human primate myeloid cells are fully functional•Anti-CD33 CAR T cells can eradicate AML while sparing CD33-deficient hematopoiesis•This is a synthetic biology approach to generating a leukemia-specific antigen Reconstitution of the immune system with CD33-negative human hematopoietic stem cells enables anti-CD33 CAR-T cell killing of acute myeloid leukemia while sparing myeloid development and function.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2018.05.013</identifier><identifier>PMID: 29856956</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acute myeloid leukemia ; Animals ; antigens ; CD33 ; Cell Differentiation ; Cell Line, Tumor ; Cell Lineage ; chimeric antigen receptor T cells ; CRISPR/Cas9 gene editing ; Electroporation ; Female ; genetic engineering ; Hematopoiesis ; hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Humans ; immunotherapy ; Immunotherapy - methods ; Leukemia, Myeloid, Acute - immunology ; Leukemia, Myeloid, Acute - therapy ; Macaca mulatta ; Male ; Mice ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; myeloid leukemia ; Neoplasm Transplantation ; non-human primate hematopoiesis ; Reactive Oxygen Species ; RNA, Guide, CRISPR-Cas Systems - genetics ; Sialic Acid Binding Ig-like Lectin 3 - genetics ; T-lymphocytes ; T-Lymphocytes - cytology ; T-Lymphocytes - immunology ; toxicity</subject><ispartof>Cell, 2018-05, Vol.173 (6), p.1439-1453.e19</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-a781b079c7f4cc7df9ea8f70711bb85f42e9061b7cea6ece12713bc7e04ce8073</citedby><cites>FETCH-LOGICAL-c537t-a781b079c7f4cc7df9ea8f70711bb85f42e9061b7cea6ece12713bc7e04ce8073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2018.05.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29856956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Miriam Y.</creatorcontrib><creatorcontrib>Yu, Kyung-Rok</creatorcontrib><creatorcontrib>Kenderian, Saad S.</creatorcontrib><creatorcontrib>Ruella, Marco</creatorcontrib><creatorcontrib>Chen, Shirley</creatorcontrib><creatorcontrib>Shin, Tae-Hoon</creatorcontrib><creatorcontrib>Aljanahi, Aisha A.</creatorcontrib><creatorcontrib>Schreeder, Daniel</creatorcontrib><creatorcontrib>Klichinsky, Michael</creatorcontrib><creatorcontrib>Shestova, Olga</creatorcontrib><creatorcontrib>Kozlowski, Miroslaw S.</creatorcontrib><creatorcontrib>Cummins, Katherine D.</creatorcontrib><creatorcontrib>Shan, Xinhe</creatorcontrib><creatorcontrib>Shestov, Maksim</creatorcontrib><creatorcontrib>Bagg, Adam</creatorcontrib><creatorcontrib>Morrissette, Jennifer J.D.</creatorcontrib><creatorcontrib>Sekhri, Palak</creatorcontrib><creatorcontrib>Lazzarotto, Cicera R.</creatorcontrib><creatorcontrib>Calvo, Katherine R.</creatorcontrib><creatorcontrib>Kuhns, Douglas B.</creatorcontrib><creatorcontrib>Donahue, Robert E.</creatorcontrib><creatorcontrib>Behbehani, Gregory K.</creatorcontrib><creatorcontrib>Tsai, Shengdar Q.</creatorcontrib><creatorcontrib>Dunbar, Cynthia E.</creatorcontrib><creatorcontrib>Gill, Saar</creatorcontrib><title>Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia</title><title>Cell</title><addtitle>Cell</addtitle><description>The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity. [Display omitted] •CD33 is not required for human myeloid development and function•CD33-deficient non-human primate myeloid cells are fully functional•Anti-CD33 CAR T cells can eradicate AML while sparing CD33-deficient hematopoiesis•This is a synthetic biology approach to generating a leukemia-specific antigen Reconstitution of the immune system with CD33-negative human hematopoietic stem cells enables anti-CD33 CAR-T cell killing of acute myeloid leukemia while sparing myeloid development and function.</description><subject>acute myeloid leukemia</subject><subject>Animals</subject><subject>antigens</subject><subject>CD33</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Cell Lineage</subject><subject>chimeric antigen receptor T cells</subject><subject>CRISPR/Cas9 gene editing</subject><subject>Electroporation</subject><subject>Female</subject><subject>genetic engineering</subject><subject>Hematopoiesis</subject><subject>hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Humans</subject><subject>immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>Leukemia, Myeloid, Acute - immunology</subject><subject>Leukemia, Myeloid, Acute - therapy</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Mice, SCID</subject><subject>myeloid leukemia</subject><subject>Neoplasm Transplantation</subject><subject>non-human primate hematopoiesis</subject><subject>Reactive Oxygen Species</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>Sialic Acid Binding Ig-like Lectin 3 - genetics</subject><subject>T-lymphocytes</subject><subject>T-Lymphocytes - cytology</subject><subject>T-Lymphocytes - immunology</subject><subject>toxicity</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EokvhD3BAPnJJGCdx7EgIaZWWdqVFSFDOluNMqJckXmxnpf33JN22Khc4WRp_7439HiFvGaQMWPlhlxrs-zQDJlPgKbD8GVkxqERSMJE9JyuAKktkKYoz8iqEHQBIzvlLcpZVkpcVL1fkcIUjRmvoZtQm2oOO1o3UdbS-yHNqR3qNg45u7-wd9T3iQOt5a6DR0ctRNz3Sev2N3txN6WYYptHFW_R6f6Sd83Rtpoj0yxF7Z1u6xekXDla_Ji863Qd8c3-ekx-fL2_q62T79WpTr7eJ4bmIiRaSNSAqI7rCGNF2FWrZCRCMNY3kXZFhBSVrhEFdokGWCZY3RiAUBiWI_Jx8Ovnup2bA1uAYve7V3ttB-6Ny2qq_b0Z7q366gyoB8iLjs8H7ewPvfk8YohpsWGLXI7opqIzlTApeyOr_KBRz5CCLxTU7oca7EDx2jy9ioJZu1U4tSrV0q4CrudtZ9O7pXx4lD2XOwMcTgHOiB4teBWNxNNhajyaq1tl_-f8BvBu2Pg</recordid><startdate>20180531</startdate><enddate>20180531</enddate><creator>Kim, Miriam Y.</creator><creator>Yu, Kyung-Rok</creator><creator>Kenderian, Saad S.</creator><creator>Ruella, Marco</creator><creator>Chen, Shirley</creator><creator>Shin, Tae-Hoon</creator><creator>Aljanahi, Aisha A.</creator><creator>Schreeder, Daniel</creator><creator>Klichinsky, Michael</creator><creator>Shestova, Olga</creator><creator>Kozlowski, Miroslaw S.</creator><creator>Cummins, Katherine D.</creator><creator>Shan, Xinhe</creator><creator>Shestov, Maksim</creator><creator>Bagg, Adam</creator><creator>Morrissette, Jennifer J.D.</creator><creator>Sekhri, Palak</creator><creator>Lazzarotto, Cicera R.</creator><creator>Calvo, Katherine R.</creator><creator>Kuhns, Douglas B.</creator><creator>Donahue, Robert E.</creator><creator>Behbehani, Gregory K.</creator><creator>Tsai, Shengdar Q.</creator><creator>Dunbar, Cynthia E.</creator><creator>Gill, Saar</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20180531</creationdate><title>Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia</title><author>Kim, Miriam Y. ; Yu, Kyung-Rok ; Kenderian, Saad S. ; Ruella, Marco ; Chen, Shirley ; Shin, Tae-Hoon ; Aljanahi, Aisha A. ; Schreeder, Daniel ; Klichinsky, Michael ; Shestova, Olga ; Kozlowski, Miroslaw S. ; Cummins, Katherine D. ; Shan, Xinhe ; Shestov, Maksim ; Bagg, Adam ; Morrissette, Jennifer J.D. ; Sekhri, Palak ; Lazzarotto, Cicera R. ; Calvo, Katherine R. ; Kuhns, Douglas B. ; Donahue, Robert E. ; Behbehani, Gregory K. ; Tsai, Shengdar Q. ; Dunbar, Cynthia E. ; Gill, Saar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-a781b079c7f4cc7df9ea8f70711bb85f42e9061b7cea6ece12713bc7e04ce8073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acute myeloid leukemia</topic><topic>Animals</topic><topic>antigens</topic><topic>CD33</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Cell Lineage</topic><topic>chimeric antigen receptor T cells</topic><topic>CRISPR/Cas9 gene editing</topic><topic>Electroporation</topic><topic>Female</topic><topic>genetic engineering</topic><topic>Hematopoiesis</topic><topic>hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Humans</topic><topic>immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>Leukemia, Myeloid, Acute - immunology</topic><topic>Leukemia, Myeloid, Acute - therapy</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Mice, SCID</topic><topic>myeloid leukemia</topic><topic>Neoplasm Transplantation</topic><topic>non-human primate hematopoiesis</topic><topic>Reactive Oxygen Species</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>Sialic Acid Binding Ig-like Lectin 3 - genetics</topic><topic>T-lymphocytes</topic><topic>T-Lymphocytes - cytology</topic><topic>T-Lymphocytes - immunology</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Miriam Y.</creatorcontrib><creatorcontrib>Yu, Kyung-Rok</creatorcontrib><creatorcontrib>Kenderian, Saad S.</creatorcontrib><creatorcontrib>Ruella, Marco</creatorcontrib><creatorcontrib>Chen, Shirley</creatorcontrib><creatorcontrib>Shin, Tae-Hoon</creatorcontrib><creatorcontrib>Aljanahi, Aisha A.</creatorcontrib><creatorcontrib>Schreeder, Daniel</creatorcontrib><creatorcontrib>Klichinsky, Michael</creatorcontrib><creatorcontrib>Shestova, Olga</creatorcontrib><creatorcontrib>Kozlowski, Miroslaw S.</creatorcontrib><creatorcontrib>Cummins, Katherine D.</creatorcontrib><creatorcontrib>Shan, Xinhe</creatorcontrib><creatorcontrib>Shestov, Maksim</creatorcontrib><creatorcontrib>Bagg, Adam</creatorcontrib><creatorcontrib>Morrissette, Jennifer J.D.</creatorcontrib><creatorcontrib>Sekhri, Palak</creatorcontrib><creatorcontrib>Lazzarotto, Cicera R.</creatorcontrib><creatorcontrib>Calvo, Katherine R.</creatorcontrib><creatorcontrib>Kuhns, Douglas B.</creatorcontrib><creatorcontrib>Donahue, Robert E.</creatorcontrib><creatorcontrib>Behbehani, Gregory K.</creatorcontrib><creatorcontrib>Tsai, Shengdar Q.</creatorcontrib><creatorcontrib>Dunbar, Cynthia E.</creatorcontrib><creatorcontrib>Gill, Saar</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Miriam Y.</au><au>Yu, Kyung-Rok</au><au>Kenderian, Saad S.</au><au>Ruella, Marco</au><au>Chen, Shirley</au><au>Shin, Tae-Hoon</au><au>Aljanahi, Aisha A.</au><au>Schreeder, Daniel</au><au>Klichinsky, Michael</au><au>Shestova, Olga</au><au>Kozlowski, Miroslaw S.</au><au>Cummins, Katherine D.</au><au>Shan, Xinhe</au><au>Shestov, Maksim</au><au>Bagg, Adam</au><au>Morrissette, Jennifer J.D.</au><au>Sekhri, Palak</au><au>Lazzarotto, Cicera R.</au><au>Calvo, Katherine R.</au><au>Kuhns, Douglas B.</au><au>Donahue, Robert E.</au><au>Behbehani, Gregory K.</au><au>Tsai, Shengdar Q.</au><au>Dunbar, Cynthia E.</au><au>Gill, Saar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2018-05-31</date><risdate>2018</risdate><volume>173</volume><issue>6</issue><spage>1439</spage><epage>1453.e19</epage><pages>1439-1453.e19</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity. [Display omitted] •CD33 is not required for human myeloid development and function•CD33-deficient non-human primate myeloid cells are fully functional•Anti-CD33 CAR T cells can eradicate AML while sparing CD33-deficient hematopoiesis•This is a synthetic biology approach to generating a leukemia-specific antigen Reconstitution of the immune system with CD33-negative human hematopoietic stem cells enables anti-CD33 CAR-T cell killing of acute myeloid leukemia while sparing myeloid development and function.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29856956</pmid><doi>10.1016/j.cell.2018.05.013</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2018-05, Vol.173 (6), p.1439-1453.e19
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003425
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects acute myeloid leukemia
Animals
antigens
CD33
Cell Differentiation
Cell Line, Tumor
Cell Lineage
chimeric antigen receptor T cells
CRISPR/Cas9 gene editing
Electroporation
Female
genetic engineering
Hematopoiesis
hematopoietic stem cells
Hematopoietic Stem Cells - cytology
Humans
immunotherapy
Immunotherapy - methods
Leukemia, Myeloid, Acute - immunology
Leukemia, Myeloid, Acute - therapy
Macaca mulatta
Male
Mice
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
myeloid leukemia
Neoplasm Transplantation
non-human primate hematopoiesis
Reactive Oxygen Species
RNA, Guide, CRISPR-Cas Systems - genetics
Sialic Acid Binding Ig-like Lectin 3 - genetics
T-lymphocytes
T-Lymphocytes - cytology
T-Lymphocytes - immunology
toxicity
title Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Inactivation%20of%20CD33%20in%20Hematopoietic%20Stem%20Cells%20to%20Enable%20CAR%20T%20Cell%20Immunotherapy%20for%20Acute%20Myeloid%20Leukemia&rft.jtitle=Cell&rft.au=Kim,%20Miriam%20Y.&rft.date=2018-05-31&rft.volume=173&rft.issue=6&rft.spage=1439&rft.epage=1453.e19&rft.pages=1439-1453.e19&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2018.05.013&rft_dat=%3Cproquest_pubme%3E2049560845%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049560845&rft_id=info:pmid/29856956&rft_els_id=S0092867418305907&rfr_iscdi=true