Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia
The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cell...
Gespeichert in:
Veröffentlicht in: | Cell 2018-05, Vol.173 (6), p.1439-1453.e19 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1453.e19 |
---|---|
container_issue | 6 |
container_start_page | 1439 |
container_title | Cell |
container_volume | 173 |
creator | Kim, Miriam Y. Yu, Kyung-Rok Kenderian, Saad S. Ruella, Marco Chen, Shirley Shin, Tae-Hoon Aljanahi, Aisha A. Schreeder, Daniel Klichinsky, Michael Shestova, Olga Kozlowski, Miroslaw S. Cummins, Katherine D. Shan, Xinhe Shestov, Maksim Bagg, Adam Morrissette, Jennifer J.D. Sekhri, Palak Lazzarotto, Cicera R. Calvo, Katherine R. Kuhns, Douglas B. Donahue, Robert E. Behbehani, Gregory K. Tsai, Shengdar Q. Dunbar, Cynthia E. Gill, Saar |
description | The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity.
[Display omitted]
•CD33 is not required for human myeloid development and function•CD33-deficient non-human primate myeloid cells are fully functional•Anti-CD33 CAR T cells can eradicate AML while sparing CD33-deficient hematopoiesis•This is a synthetic biology approach to generating a leukemia-specific antigen
Reconstitution of the immune system with CD33-negative human hematopoietic stem cells enables anti-CD33 CAR-T cell killing of acute myeloid leukemia while sparing myeloid development and function. |
doi_str_mv | 10.1016/j.cell.2018.05.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867418305907</els_id><sourcerecordid>2049560845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-a781b079c7f4cc7df9ea8f70711bb85f42e9061b7cea6ece12713bc7e04ce8073</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhD3BAPnJJGCdx7EgIaZWWdqVFSFDOluNMqJckXmxnpf33JN22Khc4WRp_7439HiFvGaQMWPlhlxrs-zQDJlPgKbD8GVkxqERSMJE9JyuAKktkKYoz8iqEHQBIzvlLcpZVkpcVL1fkcIUjRmvoZtQm2oOO1o3UdbS-yHNqR3qNg45u7-wd9T3iQOt5a6DR0ctRNz3Sev2N3txN6WYYptHFW_R6f6Sd83Rtpoj0yxF7Z1u6xekXDla_Ji863Qd8c3-ekx-fL2_q62T79WpTr7eJ4bmIiRaSNSAqI7rCGNF2FWrZCRCMNY3kXZFhBSVrhEFdokGWCZY3RiAUBiWI_Jx8Ovnup2bA1uAYve7V3ttB-6Ny2qq_b0Z7q366gyoB8iLjs8H7ewPvfk8YohpsWGLXI7opqIzlTApeyOr_KBRz5CCLxTU7oca7EDx2jy9ioJZu1U4tSrV0q4CrudtZ9O7pXx4lD2XOwMcTgHOiB4teBWNxNNhajyaq1tl_-f8BvBu2Pg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049560845</pqid></control><display><type>article</type><title>Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kim, Miriam Y. ; Yu, Kyung-Rok ; Kenderian, Saad S. ; Ruella, Marco ; Chen, Shirley ; Shin, Tae-Hoon ; Aljanahi, Aisha A. ; Schreeder, Daniel ; Klichinsky, Michael ; Shestova, Olga ; Kozlowski, Miroslaw S. ; Cummins, Katherine D. ; Shan, Xinhe ; Shestov, Maksim ; Bagg, Adam ; Morrissette, Jennifer J.D. ; Sekhri, Palak ; Lazzarotto, Cicera R. ; Calvo, Katherine R. ; Kuhns, Douglas B. ; Donahue, Robert E. ; Behbehani, Gregory K. ; Tsai, Shengdar Q. ; Dunbar, Cynthia E. ; Gill, Saar</creator><creatorcontrib>Kim, Miriam Y. ; Yu, Kyung-Rok ; Kenderian, Saad S. ; Ruella, Marco ; Chen, Shirley ; Shin, Tae-Hoon ; Aljanahi, Aisha A. ; Schreeder, Daniel ; Klichinsky, Michael ; Shestova, Olga ; Kozlowski, Miroslaw S. ; Cummins, Katherine D. ; Shan, Xinhe ; Shestov, Maksim ; Bagg, Adam ; Morrissette, Jennifer J.D. ; Sekhri, Palak ; Lazzarotto, Cicera R. ; Calvo, Katherine R. ; Kuhns, Douglas B. ; Donahue, Robert E. ; Behbehani, Gregory K. ; Tsai, Shengdar Q. ; Dunbar, Cynthia E. ; Gill, Saar</creatorcontrib><description>The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity.
[Display omitted]
•CD33 is not required for human myeloid development and function•CD33-deficient non-human primate myeloid cells are fully functional•Anti-CD33 CAR T cells can eradicate AML while sparing CD33-deficient hematopoiesis•This is a synthetic biology approach to generating a leukemia-specific antigen
Reconstitution of the immune system with CD33-negative human hematopoietic stem cells enables anti-CD33 CAR-T cell killing of acute myeloid leukemia while sparing myeloid development and function.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2018.05.013</identifier><identifier>PMID: 29856956</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>acute myeloid leukemia ; Animals ; antigens ; CD33 ; Cell Differentiation ; Cell Line, Tumor ; Cell Lineage ; chimeric antigen receptor T cells ; CRISPR/Cas9 gene editing ; Electroporation ; Female ; genetic engineering ; Hematopoiesis ; hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Humans ; immunotherapy ; Immunotherapy - methods ; Leukemia, Myeloid, Acute - immunology ; Leukemia, Myeloid, Acute - therapy ; Macaca mulatta ; Male ; Mice ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; myeloid leukemia ; Neoplasm Transplantation ; non-human primate hematopoiesis ; Reactive Oxygen Species ; RNA, Guide, CRISPR-Cas Systems - genetics ; Sialic Acid Binding Ig-like Lectin 3 - genetics ; T-lymphocytes ; T-Lymphocytes - cytology ; T-Lymphocytes - immunology ; toxicity</subject><ispartof>Cell, 2018-05, Vol.173 (6), p.1439-1453.e19</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-a781b079c7f4cc7df9ea8f70711bb85f42e9061b7cea6ece12713bc7e04ce8073</citedby><cites>FETCH-LOGICAL-c537t-a781b079c7f4cc7df9ea8f70711bb85f42e9061b7cea6ece12713bc7e04ce8073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2018.05.013$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29856956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Miriam Y.</creatorcontrib><creatorcontrib>Yu, Kyung-Rok</creatorcontrib><creatorcontrib>Kenderian, Saad S.</creatorcontrib><creatorcontrib>Ruella, Marco</creatorcontrib><creatorcontrib>Chen, Shirley</creatorcontrib><creatorcontrib>Shin, Tae-Hoon</creatorcontrib><creatorcontrib>Aljanahi, Aisha A.</creatorcontrib><creatorcontrib>Schreeder, Daniel</creatorcontrib><creatorcontrib>Klichinsky, Michael</creatorcontrib><creatorcontrib>Shestova, Olga</creatorcontrib><creatorcontrib>Kozlowski, Miroslaw S.</creatorcontrib><creatorcontrib>Cummins, Katherine D.</creatorcontrib><creatorcontrib>Shan, Xinhe</creatorcontrib><creatorcontrib>Shestov, Maksim</creatorcontrib><creatorcontrib>Bagg, Adam</creatorcontrib><creatorcontrib>Morrissette, Jennifer J.D.</creatorcontrib><creatorcontrib>Sekhri, Palak</creatorcontrib><creatorcontrib>Lazzarotto, Cicera R.</creatorcontrib><creatorcontrib>Calvo, Katherine R.</creatorcontrib><creatorcontrib>Kuhns, Douglas B.</creatorcontrib><creatorcontrib>Donahue, Robert E.</creatorcontrib><creatorcontrib>Behbehani, Gregory K.</creatorcontrib><creatorcontrib>Tsai, Shengdar Q.</creatorcontrib><creatorcontrib>Dunbar, Cynthia E.</creatorcontrib><creatorcontrib>Gill, Saar</creatorcontrib><title>Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia</title><title>Cell</title><addtitle>Cell</addtitle><description>The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity.
[Display omitted]
•CD33 is not required for human myeloid development and function•CD33-deficient non-human primate myeloid cells are fully functional•Anti-CD33 CAR T cells can eradicate AML while sparing CD33-deficient hematopoiesis•This is a synthetic biology approach to generating a leukemia-specific antigen
Reconstitution of the immune system with CD33-negative human hematopoietic stem cells enables anti-CD33 CAR-T cell killing of acute myeloid leukemia while sparing myeloid development and function.</description><subject>acute myeloid leukemia</subject><subject>Animals</subject><subject>antigens</subject><subject>CD33</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Cell Lineage</subject><subject>chimeric antigen receptor T cells</subject><subject>CRISPR/Cas9 gene editing</subject><subject>Electroporation</subject><subject>Female</subject><subject>genetic engineering</subject><subject>Hematopoiesis</subject><subject>hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Humans</subject><subject>immunotherapy</subject><subject>Immunotherapy - methods</subject><subject>Leukemia, Myeloid, Acute - immunology</subject><subject>Leukemia, Myeloid, Acute - therapy</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Mice, SCID</subject><subject>myeloid leukemia</subject><subject>Neoplasm Transplantation</subject><subject>non-human primate hematopoiesis</subject><subject>Reactive Oxygen Species</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>Sialic Acid Binding Ig-like Lectin 3 - genetics</subject><subject>T-lymphocytes</subject><subject>T-Lymphocytes - cytology</subject><subject>T-Lymphocytes - immunology</subject><subject>toxicity</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EokvhD3BAPnJJGCdx7EgIaZWWdqVFSFDOluNMqJckXmxnpf33JN22Khc4WRp_7439HiFvGaQMWPlhlxrs-zQDJlPgKbD8GVkxqERSMJE9JyuAKktkKYoz8iqEHQBIzvlLcpZVkpcVL1fkcIUjRmvoZtQm2oOO1o3UdbS-yHNqR3qNg45u7-wd9T3iQOt5a6DR0ctRNz3Sev2N3txN6WYYptHFW_R6f6Sd83Rtpoj0yxF7Z1u6xekXDla_Ji863Qd8c3-ekx-fL2_q62T79WpTr7eJ4bmIiRaSNSAqI7rCGNF2FWrZCRCMNY3kXZFhBSVrhEFdokGWCZY3RiAUBiWI_Jx8Ovnup2bA1uAYve7V3ttB-6Ny2qq_b0Z7q366gyoB8iLjs8H7ewPvfk8YohpsWGLXI7opqIzlTApeyOr_KBRz5CCLxTU7oca7EDx2jy9ioJZu1U4tSrV0q4CrudtZ9O7pXx4lD2XOwMcTgHOiB4teBWNxNNhajyaq1tl_-f8BvBu2Pg</recordid><startdate>20180531</startdate><enddate>20180531</enddate><creator>Kim, Miriam Y.</creator><creator>Yu, Kyung-Rok</creator><creator>Kenderian, Saad S.</creator><creator>Ruella, Marco</creator><creator>Chen, Shirley</creator><creator>Shin, Tae-Hoon</creator><creator>Aljanahi, Aisha A.</creator><creator>Schreeder, Daniel</creator><creator>Klichinsky, Michael</creator><creator>Shestova, Olga</creator><creator>Kozlowski, Miroslaw S.</creator><creator>Cummins, Katherine D.</creator><creator>Shan, Xinhe</creator><creator>Shestov, Maksim</creator><creator>Bagg, Adam</creator><creator>Morrissette, Jennifer J.D.</creator><creator>Sekhri, Palak</creator><creator>Lazzarotto, Cicera R.</creator><creator>Calvo, Katherine R.</creator><creator>Kuhns, Douglas B.</creator><creator>Donahue, Robert E.</creator><creator>Behbehani, Gregory K.</creator><creator>Tsai, Shengdar Q.</creator><creator>Dunbar, Cynthia E.</creator><creator>Gill, Saar</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20180531</creationdate><title>Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia</title><author>Kim, Miriam Y. ; Yu, Kyung-Rok ; Kenderian, Saad S. ; Ruella, Marco ; Chen, Shirley ; Shin, Tae-Hoon ; Aljanahi, Aisha A. ; Schreeder, Daniel ; Klichinsky, Michael ; Shestova, Olga ; Kozlowski, Miroslaw S. ; Cummins, Katherine D. ; Shan, Xinhe ; Shestov, Maksim ; Bagg, Adam ; Morrissette, Jennifer J.D. ; Sekhri, Palak ; Lazzarotto, Cicera R. ; Calvo, Katherine R. ; Kuhns, Douglas B. ; Donahue, Robert E. ; Behbehani, Gregory K. ; Tsai, Shengdar Q. ; Dunbar, Cynthia E. ; Gill, Saar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-a781b079c7f4cc7df9ea8f70711bb85f42e9061b7cea6ece12713bc7e04ce8073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acute myeloid leukemia</topic><topic>Animals</topic><topic>antigens</topic><topic>CD33</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Cell Lineage</topic><topic>chimeric antigen receptor T cells</topic><topic>CRISPR/Cas9 gene editing</topic><topic>Electroporation</topic><topic>Female</topic><topic>genetic engineering</topic><topic>Hematopoiesis</topic><topic>hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Humans</topic><topic>immunotherapy</topic><topic>Immunotherapy - methods</topic><topic>Leukemia, Myeloid, Acute - immunology</topic><topic>Leukemia, Myeloid, Acute - therapy</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Mice, SCID</topic><topic>myeloid leukemia</topic><topic>Neoplasm Transplantation</topic><topic>non-human primate hematopoiesis</topic><topic>Reactive Oxygen Species</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>Sialic Acid Binding Ig-like Lectin 3 - genetics</topic><topic>T-lymphocytes</topic><topic>T-Lymphocytes - cytology</topic><topic>T-Lymphocytes - immunology</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Miriam Y.</creatorcontrib><creatorcontrib>Yu, Kyung-Rok</creatorcontrib><creatorcontrib>Kenderian, Saad S.</creatorcontrib><creatorcontrib>Ruella, Marco</creatorcontrib><creatorcontrib>Chen, Shirley</creatorcontrib><creatorcontrib>Shin, Tae-Hoon</creatorcontrib><creatorcontrib>Aljanahi, Aisha A.</creatorcontrib><creatorcontrib>Schreeder, Daniel</creatorcontrib><creatorcontrib>Klichinsky, Michael</creatorcontrib><creatorcontrib>Shestova, Olga</creatorcontrib><creatorcontrib>Kozlowski, Miroslaw S.</creatorcontrib><creatorcontrib>Cummins, Katherine D.</creatorcontrib><creatorcontrib>Shan, Xinhe</creatorcontrib><creatorcontrib>Shestov, Maksim</creatorcontrib><creatorcontrib>Bagg, Adam</creatorcontrib><creatorcontrib>Morrissette, Jennifer J.D.</creatorcontrib><creatorcontrib>Sekhri, Palak</creatorcontrib><creatorcontrib>Lazzarotto, Cicera R.</creatorcontrib><creatorcontrib>Calvo, Katherine R.</creatorcontrib><creatorcontrib>Kuhns, Douglas B.</creatorcontrib><creatorcontrib>Donahue, Robert E.</creatorcontrib><creatorcontrib>Behbehani, Gregory K.</creatorcontrib><creatorcontrib>Tsai, Shengdar Q.</creatorcontrib><creatorcontrib>Dunbar, Cynthia E.</creatorcontrib><creatorcontrib>Gill, Saar</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Miriam Y.</au><au>Yu, Kyung-Rok</au><au>Kenderian, Saad S.</au><au>Ruella, Marco</au><au>Chen, Shirley</au><au>Shin, Tae-Hoon</au><au>Aljanahi, Aisha A.</au><au>Schreeder, Daniel</au><au>Klichinsky, Michael</au><au>Shestova, Olga</au><au>Kozlowski, Miroslaw S.</au><au>Cummins, Katherine D.</au><au>Shan, Xinhe</au><au>Shestov, Maksim</au><au>Bagg, Adam</au><au>Morrissette, Jennifer J.D.</au><au>Sekhri, Palak</au><au>Lazzarotto, Cicera R.</au><au>Calvo, Katherine R.</au><au>Kuhns, Douglas B.</au><au>Donahue, Robert E.</au><au>Behbehani, Gregory K.</au><au>Tsai, Shengdar Q.</au><au>Dunbar, Cynthia E.</au><au>Gill, Saar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2018-05-31</date><risdate>2018</risdate><volume>173</volume><issue>6</issue><spage>1439</spage><epage>1453.e19</epage><pages>1439-1453.e19</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity.
[Display omitted]
•CD33 is not required for human myeloid development and function•CD33-deficient non-human primate myeloid cells are fully functional•Anti-CD33 CAR T cells can eradicate AML while sparing CD33-deficient hematopoiesis•This is a synthetic biology approach to generating a leukemia-specific antigen
Reconstitution of the immune system with CD33-negative human hematopoietic stem cells enables anti-CD33 CAR-T cell killing of acute myeloid leukemia while sparing myeloid development and function.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29856956</pmid><doi>10.1016/j.cell.2018.05.013</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2018-05, Vol.173 (6), p.1439-1453.e19 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6003425 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | acute myeloid leukemia Animals antigens CD33 Cell Differentiation Cell Line, Tumor Cell Lineage chimeric antigen receptor T cells CRISPR/Cas9 gene editing Electroporation Female genetic engineering Hematopoiesis hematopoietic stem cells Hematopoietic Stem Cells - cytology Humans immunotherapy Immunotherapy - methods Leukemia, Myeloid, Acute - immunology Leukemia, Myeloid, Acute - therapy Macaca mulatta Male Mice Mice, Inbred NOD Mice, Knockout Mice, SCID myeloid leukemia Neoplasm Transplantation non-human primate hematopoiesis Reactive Oxygen Species RNA, Guide, CRISPR-Cas Systems - genetics Sialic Acid Binding Ig-like Lectin 3 - genetics T-lymphocytes T-Lymphocytes - cytology T-Lymphocytes - immunology toxicity |
title | Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Inactivation%20of%20CD33%20in%20Hematopoietic%20Stem%20Cells%20to%20Enable%20CAR%20T%20Cell%20Immunotherapy%20for%20Acute%20Myeloid%20Leukemia&rft.jtitle=Cell&rft.au=Kim,%20Miriam%20Y.&rft.date=2018-05-31&rft.volume=173&rft.issue=6&rft.spage=1439&rft.epage=1453.e19&rft.pages=1439-1453.e19&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2018.05.013&rft_dat=%3Cproquest_pubme%3E2049560845%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049560845&rft_id=info:pmid/29856956&rft_els_id=S0092867418305907&rfr_iscdi=true |