Anticancer activities of emetine prodrugs that are proteolytically activated by the prostate specific antigen (PSA) and evaluation of in vivo toxicity of emetine derivatives

[Display omitted] •Molecules that are toxic to all cells such as emetine can be suitably targeted to cancer.•N-2′ amine of emetine is a cytotoxicity switch (“ON” in emetine and “OFF” in prodrugs).•PSA is a suitable protease for activating prodrugs in prostate cancer microenvironment.•PSA activatable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry 2017-12, Vol.25 (24), p.6707-6717
Hauptverfasser: Akinboye, Emmanuel S., Rosen, Marc D., Bakare, Oladapo, Denmeade, Samuel R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Molecules that are toxic to all cells such as emetine can be suitably targeted to cancer.•N-2′ amine of emetine is a cytotoxicity switch (“ON” in emetine and “OFF” in prodrugs).•PSA is a suitable protease for activating prodrugs in prostate cancer microenvironment.•PSA activatable peptidyl-emetine prodrugs require a linker to prevent steric hindrance and enhance protease hydrolysis.•Conformational modulation of emetine derivatives will remove acute in vivo toxicity. Emetine is a small molecule protein synthesis inhibitor that is toxic to all cell types and therefore suitable for complete killing of all types of heterogeneous cancer cells within a tumor. It becomes significantly inactive (non-toxic) when derivatized at its N-2′ secondary amine. This provides a strategy for targeting emetine to cancerous tumor without killing normal cells. In this report, PSA activatable peptide prodrugs of emetine were synthesized. To overcome steric hindrances and enhance protease specific cleavage, a 2-stage prodrug activation process was needed to release emetine in cancer cells. In this 2-stage process, emetine prodrug intermediates are coupled to PSA peptide substrate (Ac-His-Ser-Ser-Lys-Leu-Gln) to obtain the full prodrug. Both prodrug intermediates 10 (Ala-Pro-PABC-Emetine) and 14 (Ser-Leu-PABC-Emetine) were evaluated for kinetics of hydrolysis to emetine and potency [Where PABC = p-aminobenzyloxycarbonyl]. While both intermediates quantitatively liberate emetine when incubated under appropriate conditions, upon coupling of PSA substrate to give the full prodrugs, only prodrug 16, the prodrug obtained from 14 was hydrolyzable by PSA. Cytotoxicity studies in PSA producing LNCaP and CWR22Rv1 confirm the activation of the prodrug by PSA with an IC50 of 75 nM and 59 nM respectively. The cytotoxicity of 16 is significantly reduced in cell lines that do not produce PSA. Further, in vivo toxicity studies are done on these prodrugs and other derivatives of emetine. The results show the significance of conformational modulation in obtaining safe emetine prodrugs.
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2017.11.015