Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts
Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we repor...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2018-03, Vol.57 (9), p.3204-3214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3214 |
---|---|
container_issue | 9 |
container_start_page | 3204 |
container_title | Industrial & engineering chemistry research |
container_volume | 57 |
creator | Abdilla, R. M. Rasrendra, C. B. Heeres, H. J. |
description | Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we report a kinetic study on the conversion of levoglucosan (LG) to GLC in water using sulfuric and acetic acid as the catalysts under a wide range of conditions in a batch setup. The effects of the initial LG loading (0.1–1 M), sulfuric and acetic acid concentrations (0.05–0.5 M and 0.5–1 M, respectively), and reaction temperatures (80–200 °C) were determined. Highest GLC yields were obtained using sulfuric acid (98 mol %), whereas the yields were lower for acetic acid (maximum 90 mol %) due to the formation of byproducts such as insoluble polymers (humins). The experimental data were modeled using MATLAB software, and relevant kinetic parameters were determined. Good agreement between experimental and model was obtained when assuming that the reaction is first order with respect to LG. The activation energies were 123.4 kJ mol–1 and 120.9 kJ mol–1 for sulfuric and acetic acid, respectively. |
doi_str_mv | 10.1021/acs.iecr.8b00013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5997467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2056759946</sourcerecordid><originalsourceid>FETCH-LOGICAL-a503t-8ca9612ef52f33bf0e8a832e11a884971758352d20851a15d6100433481b2b2c3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhzwp5yYIM_okTZ4PUjmhBjMQCKpaW49xMXWXs4uuM1Ddjz4vVwwwVLBAr27rnfLo-h5CXnC05E_ytdbj04NJS94wxLh-RBVeCVYrV6jFZMK11pbRWJ-QZ4k2RKFXXT8mJ6DrOlKwXZPrkA2Tv6Jc8Dx6QxkDzNdBVDDtI6MszjnQNu7iZZhfRlnGkl7_uQH2g32yGRK_Qhw09Tz9_BMww0DPnB6QWDyyb7XSHGZ-TJ6OdEF4cz1NydfH-6-pDtf58-XF1tq6sYjJX2tmu4QJGJUYp-5GBtloK4NxqXXctb5WWSgyCacUtV0PDGaulrDXvRS-cPCXvDtzbud_C4CDkZCdzm_zWpjsTrTd_T4K_Npu4M6rr2rppC-D1EZDi9xkwm61HB9NkA8QZjeAlbFmy1P-XMtW0hVs3RcoOUpciYoLxYSPOzL5PU_o0-z7Nsc9iefXnTx4MvwssgjcHwd56E-cUSrD_5t0DHbys3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056759946</pqid></control><display><type>article</type><title>Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts</title><source>ACS Publications</source><creator>Abdilla, R. M. ; Rasrendra, C. B. ; Heeres, H. J.</creator><creatorcontrib>Abdilla, R. M. ; Rasrendra, C. B. ; Heeres, H. J.</creatorcontrib><description>Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we report a kinetic study on the conversion of levoglucosan (LG) to GLC in water using sulfuric and acetic acid as the catalysts under a wide range of conditions in a batch setup. The effects of the initial LG loading (0.1–1 M), sulfuric and acetic acid concentrations (0.05–0.5 M and 0.5–1 M, respectively), and reaction temperatures (80–200 °C) were determined. Highest GLC yields were obtained using sulfuric acid (98 mol %), whereas the yields were lower for acetic acid (maximum 90 mol %) due to the formation of byproducts such as insoluble polymers (humins). The experimental data were modeled using MATLAB software, and relevant kinetic parameters were determined. Good agreement between experimental and model was obtained when assuming that the reaction is first order with respect to LG. The activation energies were 123.4 kJ mol–1 and 120.9 kJ mol–1 for sulfuric and acetic acid, respectively.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.8b00013</identifier><identifier>PMID: 29910534</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acetic acid ; activation energy ; biomass ; Bronsted acids ; byproducts ; catalysts ; computer software ; glucose ; lignocellulose ; polymers ; process design ; pyrolysis ; sulfuric acid ; temperature</subject><ispartof>Industrial & engineering chemistry research, 2018-03, Vol.57 (9), p.3204-3214</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a503t-8ca9612ef52f33bf0e8a832e11a884971758352d20851a15d6100433481b2b2c3</citedby><cites>FETCH-LOGICAL-a503t-8ca9612ef52f33bf0e8a832e11a884971758352d20851a15d6100433481b2b2c3</cites><orcidid>0000-0002-1249-543X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.8b00013$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.8b00013$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29910534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdilla, R. M.</creatorcontrib><creatorcontrib>Rasrendra, C. B.</creatorcontrib><creatorcontrib>Heeres, H. J.</creatorcontrib><title>Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we report a kinetic study on the conversion of levoglucosan (LG) to GLC in water using sulfuric and acetic acid as the catalysts under a wide range of conditions in a batch setup. The effects of the initial LG loading (0.1–1 M), sulfuric and acetic acid concentrations (0.05–0.5 M and 0.5–1 M, respectively), and reaction temperatures (80–200 °C) were determined. Highest GLC yields were obtained using sulfuric acid (98 mol %), whereas the yields were lower for acetic acid (maximum 90 mol %) due to the formation of byproducts such as insoluble polymers (humins). The experimental data were modeled using MATLAB software, and relevant kinetic parameters were determined. Good agreement between experimental and model was obtained when assuming that the reaction is first order with respect to LG. The activation energies were 123.4 kJ mol–1 and 120.9 kJ mol–1 for sulfuric and acetic acid, respectively.</description><subject>acetic acid</subject><subject>activation energy</subject><subject>biomass</subject><subject>Bronsted acids</subject><subject>byproducts</subject><subject>catalysts</subject><subject>computer software</subject><subject>glucose</subject><subject>lignocellulose</subject><subject>polymers</subject><subject>process design</subject><subject>pyrolysis</subject><subject>sulfuric acid</subject><subject>temperature</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EokNhzwp5yYIM_okTZ4PUjmhBjMQCKpaW49xMXWXs4uuM1Ddjz4vVwwwVLBAr27rnfLo-h5CXnC05E_ytdbj04NJS94wxLh-RBVeCVYrV6jFZMK11pbRWJ-QZ4k2RKFXXT8mJ6DrOlKwXZPrkA2Tv6Jc8Dx6QxkDzNdBVDDtI6MszjnQNu7iZZhfRlnGkl7_uQH2g32yGRK_Qhw09Tz9_BMww0DPnB6QWDyyb7XSHGZ-TJ6OdEF4cz1NydfH-6-pDtf58-XF1tq6sYjJX2tmu4QJGJUYp-5GBtloK4NxqXXctb5WWSgyCacUtV0PDGaulrDXvRS-cPCXvDtzbud_C4CDkZCdzm_zWpjsTrTd_T4K_Npu4M6rr2rppC-D1EZDi9xkwm61HB9NkA8QZjeAlbFmy1P-XMtW0hVs3RcoOUpciYoLxYSPOzL5PU_o0-z7Nsc9iefXnTx4MvwssgjcHwd56E-cUSrD_5t0DHbys3g</recordid><startdate>20180307</startdate><enddate>20180307</enddate><creator>Abdilla, R. M.</creator><creator>Rasrendra, C. B.</creator><creator>Heeres, H. J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1249-543X</orcidid></search><sort><creationdate>20180307</creationdate><title>Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts</title><author>Abdilla, R. M. ; Rasrendra, C. B. ; Heeres, H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a503t-8ca9612ef52f33bf0e8a832e11a884971758352d20851a15d6100433481b2b2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acetic acid</topic><topic>activation energy</topic><topic>biomass</topic><topic>Bronsted acids</topic><topic>byproducts</topic><topic>catalysts</topic><topic>computer software</topic><topic>glucose</topic><topic>lignocellulose</topic><topic>polymers</topic><topic>process design</topic><topic>pyrolysis</topic><topic>sulfuric acid</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdilla, R. M.</creatorcontrib><creatorcontrib>Rasrendra, C. B.</creatorcontrib><creatorcontrib>Heeres, H. J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdilla, R. M.</au><au>Rasrendra, C. B.</au><au>Heeres, H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2018-03-07</date><risdate>2018</risdate><volume>57</volume><issue>9</issue><spage>3204</spage><epage>3214</epage><pages>3204-3214</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we report a kinetic study on the conversion of levoglucosan (LG) to GLC in water using sulfuric and acetic acid as the catalysts under a wide range of conditions in a batch setup. The effects of the initial LG loading (0.1–1 M), sulfuric and acetic acid concentrations (0.05–0.5 M and 0.5–1 M, respectively), and reaction temperatures (80–200 °C) were determined. Highest GLC yields were obtained using sulfuric acid (98 mol %), whereas the yields were lower for acetic acid (maximum 90 mol %) due to the formation of byproducts such as insoluble polymers (humins). The experimental data were modeled using MATLAB software, and relevant kinetic parameters were determined. Good agreement between experimental and model was obtained when assuming that the reaction is first order with respect to LG. The activation energies were 123.4 kJ mol–1 and 120.9 kJ mol–1 for sulfuric and acetic acid, respectively.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29910534</pmid><doi>10.1021/acs.iecr.8b00013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1249-543X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2018-03, Vol.57 (9), p.3204-3214 |
issn | 0888-5885 1520-5045 1520-5045 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5997467 |
source | ACS Publications |
subjects | acetic acid activation energy biomass Bronsted acids byproducts catalysts computer software glucose lignocellulose polymers process design pyrolysis sulfuric acid temperature |
title | Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Studies%20on%20the%20Conversion%20of%20Levoglucosan%20to%20Glucose%20in%20Water%20Using%20Br%C3%B8nsted%20Acids%20as%20the%20Catalysts&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Abdilla,%20R.%20M.&rft.date=2018-03-07&rft.volume=57&rft.issue=9&rft.spage=3204&rft.epage=3214&rft.pages=3204-3214&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.8b00013&rft_dat=%3Cproquest_pubme%3E2056759946%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056759946&rft_id=info:pmid/29910534&rfr_iscdi=true |