Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts

Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we repor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2018-03, Vol.57 (9), p.3204-3214
Hauptverfasser: Abdilla, R. M., Rasrendra, C. B., Heeres, H. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3214
container_issue 9
container_start_page 3204
container_title Industrial & engineering chemistry research
container_volume 57
creator Abdilla, R. M.
Rasrendra, C. B.
Heeres, H. J.
description Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we report a kinetic study on the conversion of levoglucosan (LG) to GLC in water using sulfuric and acetic acid as the catalysts under a wide range of conditions in a batch setup. The effects of the initial LG loading (0.1–1 M), sulfuric and acetic acid concentrations (0.05–0.5 M and 0.5–1 M, respectively), and reaction temperatures (80–200 °C) were determined. Highest GLC yields were obtained using sulfuric acid (98 mol %), whereas the yields were lower for acetic acid (maximum 90 mol %) due to the formation of byproducts such as insoluble polymers (humins). The experimental data were modeled using MATLAB software, and relevant kinetic parameters were determined. Good agreement between experimental and model was obtained when assuming that the reaction is first order with respect to LG. The activation energies were 123.4 kJ mol–1 and 120.9 kJ mol–1 for sulfuric and acetic acid, respectively.
doi_str_mv 10.1021/acs.iecr.8b00013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5997467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2056759946</sourcerecordid><originalsourceid>FETCH-LOGICAL-a503t-8ca9612ef52f33bf0e8a832e11a884971758352d20851a15d6100433481b2b2c3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhzwp5yYIM_okTZ4PUjmhBjMQCKpaW49xMXWXs4uuM1Ddjz4vVwwwVLBAr27rnfLo-h5CXnC05E_ytdbj04NJS94wxLh-RBVeCVYrV6jFZMK11pbRWJ-QZ4k2RKFXXT8mJ6DrOlKwXZPrkA2Tv6Jc8Dx6QxkDzNdBVDDtI6MszjnQNu7iZZhfRlnGkl7_uQH2g32yGRK_Qhw09Tz9_BMww0DPnB6QWDyyb7XSHGZ-TJ6OdEF4cz1NydfH-6-pDtf58-XF1tq6sYjJX2tmu4QJGJUYp-5GBtloK4NxqXXctb5WWSgyCacUtV0PDGaulrDXvRS-cPCXvDtzbud_C4CDkZCdzm_zWpjsTrTd_T4K_Npu4M6rr2rppC-D1EZDi9xkwm61HB9NkA8QZjeAlbFmy1P-XMtW0hVs3RcoOUpciYoLxYSPOzL5PU_o0-z7Nsc9iefXnTx4MvwssgjcHwd56E-cUSrD_5t0DHbys3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056759946</pqid></control><display><type>article</type><title>Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts</title><source>ACS Publications</source><creator>Abdilla, R. M. ; Rasrendra, C. B. ; Heeres, H. J.</creator><creatorcontrib>Abdilla, R. M. ; Rasrendra, C. B. ; Heeres, H. J.</creatorcontrib><description>Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we report a kinetic study on the conversion of levoglucosan (LG) to GLC in water using sulfuric and acetic acid as the catalysts under a wide range of conditions in a batch setup. The effects of the initial LG loading (0.1–1 M), sulfuric and acetic acid concentrations (0.05–0.5 M and 0.5–1 M, respectively), and reaction temperatures (80–200 °C) were determined. Highest GLC yields were obtained using sulfuric acid (98 mol %), whereas the yields were lower for acetic acid (maximum 90 mol %) due to the formation of byproducts such as insoluble polymers (humins). The experimental data were modeled using MATLAB software, and relevant kinetic parameters were determined. Good agreement between experimental and model was obtained when assuming that the reaction is first order with respect to LG. The activation energies were 123.4 kJ mol–1 and 120.9 kJ mol–1 for sulfuric and acetic acid, respectively.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.8b00013</identifier><identifier>PMID: 29910534</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acetic acid ; activation energy ; biomass ; Bronsted acids ; byproducts ; catalysts ; computer software ; glucose ; lignocellulose ; polymers ; process design ; pyrolysis ; sulfuric acid ; temperature</subject><ispartof>Industrial &amp; engineering chemistry research, 2018-03, Vol.57 (9), p.3204-3214</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright © 2018 American Chemical Society 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a503t-8ca9612ef52f33bf0e8a832e11a884971758352d20851a15d6100433481b2b2c3</citedby><cites>FETCH-LOGICAL-a503t-8ca9612ef52f33bf0e8a832e11a884971758352d20851a15d6100433481b2b2c3</cites><orcidid>0000-0002-1249-543X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.8b00013$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.8b00013$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29910534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdilla, R. M.</creatorcontrib><creatorcontrib>Rasrendra, C. B.</creatorcontrib><creatorcontrib>Heeres, H. J.</creatorcontrib><title>Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we report a kinetic study on the conversion of levoglucosan (LG) to GLC in water using sulfuric and acetic acid as the catalysts under a wide range of conditions in a batch setup. The effects of the initial LG loading (0.1–1 M), sulfuric and acetic acid concentrations (0.05–0.5 M and 0.5–1 M, respectively), and reaction temperatures (80–200 °C) were determined. Highest GLC yields were obtained using sulfuric acid (98 mol %), whereas the yields were lower for acetic acid (maximum 90 mol %) due to the formation of byproducts such as insoluble polymers (humins). The experimental data were modeled using MATLAB software, and relevant kinetic parameters were determined. Good agreement between experimental and model was obtained when assuming that the reaction is first order with respect to LG. The activation energies were 123.4 kJ mol–1 and 120.9 kJ mol–1 for sulfuric and acetic acid, respectively.</description><subject>acetic acid</subject><subject>activation energy</subject><subject>biomass</subject><subject>Bronsted acids</subject><subject>byproducts</subject><subject>catalysts</subject><subject>computer software</subject><subject>glucose</subject><subject>lignocellulose</subject><subject>polymers</subject><subject>process design</subject><subject>pyrolysis</subject><subject>sulfuric acid</subject><subject>temperature</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EokNhzwp5yYIM_okTZ4PUjmhBjMQCKpaW49xMXWXs4uuM1Ddjz4vVwwwVLBAr27rnfLo-h5CXnC05E_ytdbj04NJS94wxLh-RBVeCVYrV6jFZMK11pbRWJ-QZ4k2RKFXXT8mJ6DrOlKwXZPrkA2Tv6Jc8Dx6QxkDzNdBVDDtI6MszjnQNu7iZZhfRlnGkl7_uQH2g32yGRK_Qhw09Tz9_BMww0DPnB6QWDyyb7XSHGZ-TJ6OdEF4cz1NydfH-6-pDtf58-XF1tq6sYjJX2tmu4QJGJUYp-5GBtloK4NxqXXctb5WWSgyCacUtV0PDGaulrDXvRS-cPCXvDtzbud_C4CDkZCdzm_zWpjsTrTd_T4K_Npu4M6rr2rppC-D1EZDi9xkwm61HB9NkA8QZjeAlbFmy1P-XMtW0hVs3RcoOUpciYoLxYSPOzL5PU_o0-z7Nsc9iefXnTx4MvwssgjcHwd56E-cUSrD_5t0DHbys3g</recordid><startdate>20180307</startdate><enddate>20180307</enddate><creator>Abdilla, R. M.</creator><creator>Rasrendra, C. B.</creator><creator>Heeres, H. J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1249-543X</orcidid></search><sort><creationdate>20180307</creationdate><title>Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts</title><author>Abdilla, R. M. ; Rasrendra, C. B. ; Heeres, H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a503t-8ca9612ef52f33bf0e8a832e11a884971758352d20851a15d6100433481b2b2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>acetic acid</topic><topic>activation energy</topic><topic>biomass</topic><topic>Bronsted acids</topic><topic>byproducts</topic><topic>catalysts</topic><topic>computer software</topic><topic>glucose</topic><topic>lignocellulose</topic><topic>polymers</topic><topic>process design</topic><topic>pyrolysis</topic><topic>sulfuric acid</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdilla, R. M.</creatorcontrib><creatorcontrib>Rasrendra, C. B.</creatorcontrib><creatorcontrib>Heeres, H. J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdilla, R. M.</au><au>Rasrendra, C. B.</au><au>Heeres, H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2018-03-07</date><risdate>2018</risdate><volume>57</volume><issue>9</issue><spage>3204</spage><epage>3214</epage><pages>3204-3214</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we report a kinetic study on the conversion of levoglucosan (LG) to GLC in water using sulfuric and acetic acid as the catalysts under a wide range of conditions in a batch setup. The effects of the initial LG loading (0.1–1 M), sulfuric and acetic acid concentrations (0.05–0.5 M and 0.5–1 M, respectively), and reaction temperatures (80–200 °C) were determined. Highest GLC yields were obtained using sulfuric acid (98 mol %), whereas the yields were lower for acetic acid (maximum 90 mol %) due to the formation of byproducts such as insoluble polymers (humins). The experimental data were modeled using MATLAB software, and relevant kinetic parameters were determined. Good agreement between experimental and model was obtained when assuming that the reaction is first order with respect to LG. The activation energies were 123.4 kJ mol–1 and 120.9 kJ mol–1 for sulfuric and acetic acid, respectively.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29910534</pmid><doi>10.1021/acs.iecr.8b00013</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1249-543X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2018-03, Vol.57 (9), p.3204-3214
issn 0888-5885
1520-5045
1520-5045
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5997467
source ACS Publications
subjects acetic acid
activation energy
biomass
Bronsted acids
byproducts
catalysts
computer software
glucose
lignocellulose
polymers
process design
pyrolysis
sulfuric acid
temperature
title Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Studies%20on%20the%20Conversion%20of%20Levoglucosan%20to%20Glucose%20in%20Water%20Using%20Br%C3%B8nsted%20Acids%20as%20the%20Catalysts&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Abdilla,%20R.%20M.&rft.date=2018-03-07&rft.volume=57&rft.issue=9&rft.spage=3204&rft.epage=3214&rft.pages=3204-3214&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.8b00013&rft_dat=%3Cproquest_pubme%3E2056759946%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056759946&rft_id=info:pmid/29910534&rfr_iscdi=true