Multiplexed neural recording along a single optical fiber via optical reflectometry

We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2016-05, Vol.21 (5), p.057003-057003
Hauptverfasser: Rodriques, Samuel G, Marblestone, Adam H, Scholvin, Jorg, Dapello, Joel, Sarkar, Deblina, Mankin, Max, Gao, Ruixuan, Wood, Lowell, Boyden, Edward S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 057003
container_issue 5
container_start_page 057003
container_title Journal of biomedical optics
container_volume 21
creator Rodriques, Samuel G
Marblestone, Adam H
Scholvin, Jorg
Dapello, Joel
Sarkar, Deblina
Mankin, Max
Gao, Ruixuan
Wood, Lowell
Boyden, Edward S
description We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index of a waveguide by applying a voltage across an electro-optic core material. We estimate that this design would allow recording of the activities of individual neurons located at points along a 10-cm length of optical fiber with 40-μm axial resolution and sensitivity down to 100  μV using commercially available optical reflectometers as readout devices. Neural recording sites detect a potential difference against a reference and apply this potential to a capacitor. The waveguide serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in an optical effect. A key concept of the design is that the sensitivity can be improved by increasing the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high relative permittivity. If suitable materials can be found-possessing high capacitance per unit area as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and surface capacitance-then such sensing fibers could, in principle, be scaled down to few-micron cross-sections for minimally invasive neural interfacing. We study these material requirements and propose potential material choices. Custom-designed multimaterial optical fibers, probed using a reflectometric readout, may, therefore, provide a powerful platform for neural sensing.
doi_str_mv 10.1117/1.JBO.21.5.057003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5996874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790454118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-db80176ee53412b8b6f41dbe0d37250f8e3a5e767c0f183fe3d27f077c74c6b83</originalsourceid><addsrcrecordid>eNp1kc9v1TAMxyMEYmPwB3BBPXJpiZvmRy9IY2NjaNOQGOeoTZ2RKa8pSTsx_vrl8bYHDLgksf31x45NyEugFQDIN1B9fHde1VDxinJJKXtEdoELWta1gsf5TRUrmRBqhzxL6YpSqkQrnpKdWkLbiIbuks9ni5_d5PE7DsWIS-x8EdGEOLjxsuh8WJ9FyobHIkyzM1lgXY-xuHbd1hPRejRzWOEcb56TJ7bzCV_c3Xvky9H7i4MP5en58cnB_mlpOPC5HHpFQQpEzhqoe9UL28DQIx2YrDm1ClnHUQppqAXFLLKhlpZKaWRjRK_YHnm74U5Lv8LB4Djn9vUU3aqLNzp0Tv8ZGd1XfRmuNW9boWSTAa_vADF8WzDNeuWSQe-7EcOSNMiWNrwBWNeCjdTEkFL-7rYMUL1ehgadl6Fr0FxvlpFzXv3e3zbjfvpZcLERpMmhvgpLHPO8fnF-uOkh9KdvP-ape_x0ePRXeBpsxlb_wv6_0VsEwbDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790454118</pqid></control><display><type>article</type><title>Multiplexed neural recording along a single optical fiber via optical reflectometry</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rodriques, Samuel G ; Marblestone, Adam H ; Scholvin, Jorg ; Dapello, Joel ; Sarkar, Deblina ; Mankin, Max ; Gao, Ruixuan ; Wood, Lowell ; Boyden, Edward S</creator><creatorcontrib>Rodriques, Samuel G ; Marblestone, Adam H ; Scholvin, Jorg ; Dapello, Joel ; Sarkar, Deblina ; Mankin, Max ; Gao, Ruixuan ; Wood, Lowell ; Boyden, Edward S</creatorcontrib><description>We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index of a waveguide by applying a voltage across an electro-optic core material. We estimate that this design would allow recording of the activities of individual neurons located at points along a 10-cm length of optical fiber with 40-μm axial resolution and sensitivity down to 100  μV using commercially available optical reflectometers as readout devices. Neural recording sites detect a potential difference against a reference and apply this potential to a capacitor. The waveguide serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in an optical effect. A key concept of the design is that the sensitivity can be improved by increasing the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high relative permittivity. If suitable materials can be found-possessing high capacitance per unit area as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and surface capacitance-then such sensing fibers could, in principle, be scaled down to few-micron cross-sections for minimally invasive neural interfacing. We study these material requirements and propose potential material choices. Custom-designed multimaterial optical fibers, probed using a reflectometric readout, may, therefore, provide a powerful platform for neural sensing.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.21.5.057003</identifier><identifier>PMID: 27194640</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Equipment Design ; Humans ; Neurons - physiology ; Neurophysiology - instrumentation ; Neurophysiology - methods ; Optical Fibers ; Optics and Photonics - instrumentation ; Refractometry ; Research Papers: Sensing</subject><ispartof>Journal of biomedical optics, 2016-05, Vol.21 (5), p.057003-057003</ispartof><rights>The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.</rights><rights>The Authors. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-db80176ee53412b8b6f41dbe0d37250f8e3a5e767c0f183fe3d27f077c74c6b83</citedby><cites>FETCH-LOGICAL-c515t-db80176ee53412b8b6f41dbe0d37250f8e3a5e767c0f183fe3d27f077c74c6b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996874/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996874/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27194640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodriques, Samuel G</creatorcontrib><creatorcontrib>Marblestone, Adam H</creatorcontrib><creatorcontrib>Scholvin, Jorg</creatorcontrib><creatorcontrib>Dapello, Joel</creatorcontrib><creatorcontrib>Sarkar, Deblina</creatorcontrib><creatorcontrib>Mankin, Max</creatorcontrib><creatorcontrib>Gao, Ruixuan</creatorcontrib><creatorcontrib>Wood, Lowell</creatorcontrib><creatorcontrib>Boyden, Edward S</creatorcontrib><title>Multiplexed neural recording along a single optical fiber via optical reflectometry</title><title>Journal of biomedical optics</title><addtitle>J. Biomed. Opt</addtitle><description>We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index of a waveguide by applying a voltage across an electro-optic core material. We estimate that this design would allow recording of the activities of individual neurons located at points along a 10-cm length of optical fiber with 40-μm axial resolution and sensitivity down to 100  μV using commercially available optical reflectometers as readout devices. Neural recording sites detect a potential difference against a reference and apply this potential to a capacitor. The waveguide serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in an optical effect. A key concept of the design is that the sensitivity can be improved by increasing the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high relative permittivity. If suitable materials can be found-possessing high capacitance per unit area as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and surface capacitance-then such sensing fibers could, in principle, be scaled down to few-micron cross-sections for minimally invasive neural interfacing. We study these material requirements and propose potential material choices. Custom-designed multimaterial optical fibers, probed using a reflectometric readout, may, therefore, provide a powerful platform for neural sensing.</description><subject>Equipment Design</subject><subject>Humans</subject><subject>Neurons - physiology</subject><subject>Neurophysiology - instrumentation</subject><subject>Neurophysiology - methods</subject><subject>Optical Fibers</subject><subject>Optics and Photonics - instrumentation</subject><subject>Refractometry</subject><subject>Research Papers: Sensing</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9v1TAMxyMEYmPwB3BBPXJpiZvmRy9IY2NjaNOQGOeoTZ2RKa8pSTsx_vrl8bYHDLgksf31x45NyEugFQDIN1B9fHde1VDxinJJKXtEdoELWta1gsf5TRUrmRBqhzxL6YpSqkQrnpKdWkLbiIbuks9ni5_d5PE7DsWIS-x8EdGEOLjxsuh8WJ9FyobHIkyzM1lgXY-xuHbd1hPRejRzWOEcb56TJ7bzCV_c3Xvky9H7i4MP5en58cnB_mlpOPC5HHpFQQpEzhqoe9UL28DQIx2YrDm1ClnHUQppqAXFLLKhlpZKaWRjRK_YHnm74U5Lv8LB4Djn9vUU3aqLNzp0Tv8ZGd1XfRmuNW9boWSTAa_vADF8WzDNeuWSQe-7EcOSNMiWNrwBWNeCjdTEkFL-7rYMUL1ehgadl6Fr0FxvlpFzXv3e3zbjfvpZcLERpMmhvgpLHPO8fnF-uOkh9KdvP-ape_x0ePRXeBpsxlb_wv6_0VsEwbDw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Rodriques, Samuel G</creator><creator>Marblestone, Adam H</creator><creator>Scholvin, Jorg</creator><creator>Dapello, Joel</creator><creator>Sarkar, Deblina</creator><creator>Mankin, Max</creator><creator>Gao, Ruixuan</creator><creator>Wood, Lowell</creator><creator>Boyden, Edward S</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160501</creationdate><title>Multiplexed neural recording along a single optical fiber via optical reflectometry</title><author>Rodriques, Samuel G ; Marblestone, Adam H ; Scholvin, Jorg ; Dapello, Joel ; Sarkar, Deblina ; Mankin, Max ; Gao, Ruixuan ; Wood, Lowell ; Boyden, Edward S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-db80176ee53412b8b6f41dbe0d37250f8e3a5e767c0f183fe3d27f077c74c6b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Equipment Design</topic><topic>Humans</topic><topic>Neurons - physiology</topic><topic>Neurophysiology - instrumentation</topic><topic>Neurophysiology - methods</topic><topic>Optical Fibers</topic><topic>Optics and Photonics - instrumentation</topic><topic>Refractometry</topic><topic>Research Papers: Sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodriques, Samuel G</creatorcontrib><creatorcontrib>Marblestone, Adam H</creatorcontrib><creatorcontrib>Scholvin, Jorg</creatorcontrib><creatorcontrib>Dapello, Joel</creatorcontrib><creatorcontrib>Sarkar, Deblina</creatorcontrib><creatorcontrib>Mankin, Max</creatorcontrib><creatorcontrib>Gao, Ruixuan</creatorcontrib><creatorcontrib>Wood, Lowell</creatorcontrib><creatorcontrib>Boyden, Edward S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodriques, Samuel G</au><au>Marblestone, Adam H</au><au>Scholvin, Jorg</au><au>Dapello, Joel</au><au>Sarkar, Deblina</au><au>Mankin, Max</au><au>Gao, Ruixuan</au><au>Wood, Lowell</au><au>Boyden, Edward S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplexed neural recording along a single optical fiber via optical reflectometry</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J. Biomed. Opt</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>21</volume><issue>5</issue><spage>057003</spage><epage>057003</epage><pages>057003-057003</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><abstract>We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index of a waveguide by applying a voltage across an electro-optic core material. We estimate that this design would allow recording of the activities of individual neurons located at points along a 10-cm length of optical fiber with 40-μm axial resolution and sensitivity down to 100  μV using commercially available optical reflectometers as readout devices. Neural recording sites detect a potential difference against a reference and apply this potential to a capacitor. The waveguide serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in an optical effect. A key concept of the design is that the sensitivity can be improved by increasing the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high relative permittivity. If suitable materials can be found-possessing high capacitance per unit area as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and surface capacitance-then such sensing fibers could, in principle, be scaled down to few-micron cross-sections for minimally invasive neural interfacing. We study these material requirements and propose potential material choices. Custom-designed multimaterial optical fibers, probed using a reflectometric readout, may, therefore, provide a powerful platform for neural sensing.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>27194640</pmid><doi>10.1117/1.JBO.21.5.057003</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of biomedical optics, 2016-05, Vol.21 (5), p.057003-057003
issn 1083-3668
1560-2281
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5996874
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Equipment Design
Humans
Neurons - physiology
Neurophysiology - instrumentation
Neurophysiology - methods
Optical Fibers
Optics and Photonics - instrumentation
Refractometry
Research Papers: Sensing
title Multiplexed neural recording along a single optical fiber via optical reflectometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplexed%20neural%20recording%20along%20a%20single%20optical%20fiber%20via%20optical%20reflectometry&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Rodriques,%20Samuel%20G&rft.date=2016-05-01&rft.volume=21&rft.issue=5&rft.spage=057003&rft.epage=057003&rft.pages=057003-057003&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.21.5.057003&rft_dat=%3Cproquest_pubme%3E1790454118%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790454118&rft_id=info:pmid/27194640&rfr_iscdi=true