Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins
Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are en...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2018-03, Vol.25 (3), p.279-288 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | 3 |
container_start_page | 279 |
container_title | Nature structural & molecular biology |
container_volume | 25 |
creator | Natan, Eviatar Endoh, Tamaki Haim-Vilmovsky, Liora Flock, Tilman Chalancon, Guilhem Hopper, Jonathan T. S. Kintses, Bálint Horvath, Peter Daruka, Lejla Fekete, Gergely Pál, Csaba Papp, Balázs Oszi, Erika Magyar, Zoltán Marsh, Joseph A. Elcock, Adrian H. Babu, M. Madan Robinson, Carol V. Sugimoto, Naoki Teichmann, Sarah A. |
description | Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in
Escherichia coli
and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization.
In vivo, in vitro and in silico experiments demonstrate that interface residues of homomeric proteins are enriched toward protein C termini to avoid premature assembly and aggregation. |
doi_str_mv | 10.1038/s41594-018-0029-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5995306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382235</galeid><sourcerecordid>A593382235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-23b1b7dd895d6959468d23b24f5927ea64fded721bb5d830c45cbba78394e1243</originalsourceid><addsrcrecordid>eNp1kk1rFTEYhYNYbK3-ADcy4EYXU_M5k2yEcqlaKAh-4DJkZt65TZlJrnlniv33zXjb215RskhInnN4cziEvGL0hFGh36NkysiSMl1Syk2pnpAjpqQqjdHq6e5sxCF5jniVGaVq8YwcciNFXuqI_FzFKbmAg5t8DG4oNilO4EPhEGFshpvCj5uIgAVcx2H-A6Wboo0Bs86HCYsYiss4xhGSb-_l-IIc9G5AeHm3H5MfH8--rz6XF18-na9OL8q2EvVUctGwpu46bVRXmfyZSnf5jsteGV6Dq2TfQVdz1jSq04K2UrVN42otjATGpTgmH7a-m7kZoWsh5LEGu0l-zHPa6Lzdfwn-0q7jtVXGKEGrbPD2ziDFXzPgZEePLQyDCxBntJxSZhinckHf_IVexTnl0DLFtDY1r4V5oNZuAOtDvwTcLqb2VBkhNOdCZerkH1ReHYw-pwu9z_d7gnd7gsxM8HtauxnRnn_7us-yLdumiJig3-XBqF2aY7fNsbk5dmmOXTSvHwe5U9xXJQN8C2B-CmtID7__v-st2dPOjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188972739</pqid></control><display><type>article</type><title>Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink</source><creator>Natan, Eviatar ; Endoh, Tamaki ; Haim-Vilmovsky, Liora ; Flock, Tilman ; Chalancon, Guilhem ; Hopper, Jonathan T. S. ; Kintses, Bálint ; Horvath, Peter ; Daruka, Lejla ; Fekete, Gergely ; Pál, Csaba ; Papp, Balázs ; Oszi, Erika ; Magyar, Zoltán ; Marsh, Joseph A. ; Elcock, Adrian H. ; Babu, M. Madan ; Robinson, Carol V. ; Sugimoto, Naoki ; Teichmann, Sarah A.</creator><creatorcontrib>Natan, Eviatar ; Endoh, Tamaki ; Haim-Vilmovsky, Liora ; Flock, Tilman ; Chalancon, Guilhem ; Hopper, Jonathan T. S. ; Kintses, Bálint ; Horvath, Peter ; Daruka, Lejla ; Fekete, Gergely ; Pál, Csaba ; Papp, Balázs ; Oszi, Erika ; Magyar, Zoltán ; Marsh, Joseph A. ; Elcock, Adrian H. ; Babu, M. Madan ; Robinson, Carol V. ; Sugimoto, Naoki ; Teichmann, Sarah A.</creatorcontrib><description>Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in
Escherichia coli
and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization.
In vivo, in vitro and in silico experiments demonstrate that interface residues of homomeric proteins are enriched toward protein C termini to avoid premature assembly and aggregation.</description><identifier>ISSN: 1545-9993</identifier><identifier>ISSN: 1545-9985</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-018-0029-5</identifier><identifier>PMID: 29434345</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/31 ; 13/51 ; 14/19 ; 14/35 ; 631/45/470 ; 631/45/470/2284 ; 631/45/612 ; 82/58 ; 82/80 ; 82/83 ; 96 ; Analysis ; Assembly ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Chains ; Design optimization ; E coli ; Escherichia coli ; Evolution, Molecular ; Folding ; Influence ; Life Sciences ; Membrane Biology ; Models, Molecular ; Molecular Chaperones - metabolism ; Multiprotein Complexes - chemistry ; Oligomerization ; Oligomers ; Protein Biosynthesis ; Protein C ; Protein Domains ; Protein Engineering ; Protein Folding ; Protein Multimerization ; Protein Structure ; Protein Subunits - biosynthesis ; Protein Subunits - chemistry ; Proteins ; Residues ; Ribosomes - metabolism ; RNA, Messenger - metabolism ; Solubility</subject><ispartof>Nature structural & molecular biology, 2018-03, Vol.25 (3), p.279-288</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-23b1b7dd895d6959468d23b24f5927ea64fded721bb5d830c45cbba78394e1243</citedby><cites>FETCH-LOGICAL-c637t-23b1b7dd895d6959468d23b24f5927ea64fded721bb5d830c45cbba78394e1243</cites><orcidid>0000-0003-3398-0968 ; 0000-0003-0556-6196 ; 0000-0002-0323-0034 ; 0000-0003-4132-0628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-018-0029-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-018-0029-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29434345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Natan, Eviatar</creatorcontrib><creatorcontrib>Endoh, Tamaki</creatorcontrib><creatorcontrib>Haim-Vilmovsky, Liora</creatorcontrib><creatorcontrib>Flock, Tilman</creatorcontrib><creatorcontrib>Chalancon, Guilhem</creatorcontrib><creatorcontrib>Hopper, Jonathan T. S.</creatorcontrib><creatorcontrib>Kintses, Bálint</creatorcontrib><creatorcontrib>Horvath, Peter</creatorcontrib><creatorcontrib>Daruka, Lejla</creatorcontrib><creatorcontrib>Fekete, Gergely</creatorcontrib><creatorcontrib>Pál, Csaba</creatorcontrib><creatorcontrib>Papp, Balázs</creatorcontrib><creatorcontrib>Oszi, Erika</creatorcontrib><creatorcontrib>Magyar, Zoltán</creatorcontrib><creatorcontrib>Marsh, Joseph A.</creatorcontrib><creatorcontrib>Elcock, Adrian H.</creatorcontrib><creatorcontrib>Babu, M. Madan</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Sugimoto, Naoki</creatorcontrib><creatorcontrib>Teichmann, Sarah A.</creatorcontrib><title>Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in
Escherichia coli
and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization.
In vivo, in vitro and in silico experiments demonstrate that interface residues of homomeric proteins are enriched toward protein C termini to avoid premature assembly and aggregation.</description><subject>13/31</subject><subject>13/51</subject><subject>14/19</subject><subject>14/35</subject><subject>631/45/470</subject><subject>631/45/470/2284</subject><subject>631/45/612</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>96</subject><subject>Analysis</subject><subject>Assembly</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chains</subject><subject>Design optimization</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Evolution, Molecular</subject><subject>Folding</subject><subject>Influence</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Models, Molecular</subject><subject>Molecular Chaperones - metabolism</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Oligomerization</subject><subject>Oligomers</subject><subject>Protein Biosynthesis</subject><subject>Protein C</subject><subject>Protein Domains</subject><subject>Protein Engineering</subject><subject>Protein Folding</subject><subject>Protein Multimerization</subject><subject>Protein Structure</subject><subject>Protein Subunits - biosynthesis</subject><subject>Protein Subunits - chemistry</subject><subject>Proteins</subject><subject>Residues</subject><subject>Ribosomes - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Solubility</subject><issn>1545-9993</issn><issn>1545-9985</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kk1rFTEYhYNYbK3-ADcy4EYXU_M5k2yEcqlaKAh-4DJkZt65TZlJrnlniv33zXjb215RskhInnN4cziEvGL0hFGh36NkysiSMl1Syk2pnpAjpqQqjdHq6e5sxCF5jniVGaVq8YwcciNFXuqI_FzFKbmAg5t8DG4oNilO4EPhEGFshpvCj5uIgAVcx2H-A6Wboo0Bs86HCYsYiss4xhGSb-_l-IIc9G5AeHm3H5MfH8--rz6XF18-na9OL8q2EvVUctGwpu46bVRXmfyZSnf5jsteGV6Dq2TfQVdz1jSq04K2UrVN42otjATGpTgmH7a-m7kZoWsh5LEGu0l-zHPa6Lzdfwn-0q7jtVXGKEGrbPD2ziDFXzPgZEePLQyDCxBntJxSZhinckHf_IVexTnl0DLFtDY1r4V5oNZuAOtDvwTcLqb2VBkhNOdCZerkH1ReHYw-pwu9z_d7gnd7gsxM8HtauxnRnn_7us-yLdumiJig3-XBqF2aY7fNsbk5dmmOXTSvHwe5U9xXJQN8C2B-CmtID7__v-st2dPOjw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Natan, Eviatar</creator><creator>Endoh, Tamaki</creator><creator>Haim-Vilmovsky, Liora</creator><creator>Flock, Tilman</creator><creator>Chalancon, Guilhem</creator><creator>Hopper, Jonathan T. S.</creator><creator>Kintses, Bálint</creator><creator>Horvath, Peter</creator><creator>Daruka, Lejla</creator><creator>Fekete, Gergely</creator><creator>Pál, Csaba</creator><creator>Papp, Balázs</creator><creator>Oszi, Erika</creator><creator>Magyar, Zoltán</creator><creator>Marsh, Joseph A.</creator><creator>Elcock, Adrian H.</creator><creator>Babu, M. Madan</creator><creator>Robinson, Carol V.</creator><creator>Sugimoto, Naoki</creator><creator>Teichmann, Sarah A.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3398-0968</orcidid><orcidid>https://orcid.org/0000-0003-0556-6196</orcidid><orcidid>https://orcid.org/0000-0002-0323-0034</orcidid><orcidid>https://orcid.org/0000-0003-4132-0628</orcidid></search><sort><creationdate>20180301</creationdate><title>Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins</title><author>Natan, Eviatar ; Endoh, Tamaki ; Haim-Vilmovsky, Liora ; Flock, Tilman ; Chalancon, Guilhem ; Hopper, Jonathan T. S. ; Kintses, Bálint ; Horvath, Peter ; Daruka, Lejla ; Fekete, Gergely ; Pál, Csaba ; Papp, Balázs ; Oszi, Erika ; Magyar, Zoltán ; Marsh, Joseph A. ; Elcock, Adrian H. ; Babu, M. Madan ; Robinson, Carol V. ; Sugimoto, Naoki ; Teichmann, Sarah A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-23b1b7dd895d6959468d23b24f5927ea64fded721bb5d830c45cbba78394e1243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/31</topic><topic>13/51</topic><topic>14/19</topic><topic>14/35</topic><topic>631/45/470</topic><topic>631/45/470/2284</topic><topic>631/45/612</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>96</topic><topic>Analysis</topic><topic>Assembly</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chains</topic><topic>Design optimization</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Evolution, Molecular</topic><topic>Folding</topic><topic>Influence</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Models, Molecular</topic><topic>Molecular Chaperones - metabolism</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Oligomerization</topic><topic>Oligomers</topic><topic>Protein Biosynthesis</topic><topic>Protein C</topic><topic>Protein Domains</topic><topic>Protein Engineering</topic><topic>Protein Folding</topic><topic>Protein Multimerization</topic><topic>Protein Structure</topic><topic>Protein Subunits - biosynthesis</topic><topic>Protein Subunits - chemistry</topic><topic>Proteins</topic><topic>Residues</topic><topic>Ribosomes - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Natan, Eviatar</creatorcontrib><creatorcontrib>Endoh, Tamaki</creatorcontrib><creatorcontrib>Haim-Vilmovsky, Liora</creatorcontrib><creatorcontrib>Flock, Tilman</creatorcontrib><creatorcontrib>Chalancon, Guilhem</creatorcontrib><creatorcontrib>Hopper, Jonathan T. S.</creatorcontrib><creatorcontrib>Kintses, Bálint</creatorcontrib><creatorcontrib>Horvath, Peter</creatorcontrib><creatorcontrib>Daruka, Lejla</creatorcontrib><creatorcontrib>Fekete, Gergely</creatorcontrib><creatorcontrib>Pál, Csaba</creatorcontrib><creatorcontrib>Papp, Balázs</creatorcontrib><creatorcontrib>Oszi, Erika</creatorcontrib><creatorcontrib>Magyar, Zoltán</creatorcontrib><creatorcontrib>Marsh, Joseph A.</creatorcontrib><creatorcontrib>Elcock, Adrian H.</creatorcontrib><creatorcontrib>Babu, M. Madan</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Sugimoto, Naoki</creatorcontrib><creatorcontrib>Teichmann, Sarah A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Natan, Eviatar</au><au>Endoh, Tamaki</au><au>Haim-Vilmovsky, Liora</au><au>Flock, Tilman</au><au>Chalancon, Guilhem</au><au>Hopper, Jonathan T. S.</au><au>Kintses, Bálint</au><au>Horvath, Peter</au><au>Daruka, Lejla</au><au>Fekete, Gergely</au><au>Pál, Csaba</au><au>Papp, Balázs</au><au>Oszi, Erika</au><au>Magyar, Zoltán</au><au>Marsh, Joseph A.</au><au>Elcock, Adrian H.</au><au>Babu, M. Madan</au><au>Robinson, Carol V.</au><au>Sugimoto, Naoki</au><au>Teichmann, Sarah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>25</volume><issue>3</issue><spage>279</spage><epage>288</epage><pages>279-288</pages><issn>1545-9993</issn><issn>1545-9985</issn><eissn>1545-9985</eissn><abstract>Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in
Escherichia coli
and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization.
In vivo, in vitro and in silico experiments demonstrate that interface residues of homomeric proteins are enriched toward protein C termini to avoid premature assembly and aggregation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29434345</pmid><doi>10.1038/s41594-018-0029-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3398-0968</orcidid><orcidid>https://orcid.org/0000-0003-0556-6196</orcidid><orcidid>https://orcid.org/0000-0002-0323-0034</orcidid><orcidid>https://orcid.org/0000-0003-4132-0628</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2018-03, Vol.25 (3), p.279-288 |
issn | 1545-9993 1545-9985 1545-9985 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5995306 |
source | MEDLINE; Nature; SpringerLink |
subjects | 13/31 13/51 14/19 14/35 631/45/470 631/45/470/2284 631/45/612 82/58 82/80 82/83 96 Analysis Assembly Biochemistry Biological Microscopy Biomedical and Life Sciences Chains Design optimization E coli Escherichia coli Evolution, Molecular Folding Influence Life Sciences Membrane Biology Models, Molecular Molecular Chaperones - metabolism Multiprotein Complexes - chemistry Oligomerization Oligomers Protein Biosynthesis Protein C Protein Domains Protein Engineering Protein Folding Protein Multimerization Protein Structure Protein Subunits - biosynthesis Protein Subunits - chemistry Proteins Residues Ribosomes - metabolism RNA, Messenger - metabolism Solubility |
title | Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cotranslational%20protein%20assembly%20imposes%20evolutionary%20constraints%20on%20homomeric%20proteins&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Natan,%20Eviatar&rft.date=2018-03-01&rft.volume=25&rft.issue=3&rft.spage=279&rft.epage=288&rft.pages=279-288&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-018-0029-5&rft_dat=%3Cgale_pubme%3EA593382235%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188972739&rft_id=info:pmid/29434345&rft_galeid=A593382235&rfr_iscdi=true |