Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins

Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2018-03, Vol.25 (3), p.279-288
Hauptverfasser: Natan, Eviatar, Endoh, Tamaki, Haim-Vilmovsky, Liora, Flock, Tilman, Chalancon, Guilhem, Hopper, Jonathan T. S., Kintses, Bálint, Horvath, Peter, Daruka, Lejla, Fekete, Gergely, Pál, Csaba, Papp, Balázs, Oszi, Erika, Magyar, Zoltán, Marsh, Joseph A., Elcock, Adrian H., Babu, M. Madan, Robinson, Carol V., Sugimoto, Naoki, Teichmann, Sarah A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue 3
container_start_page 279
container_title Nature structural & molecular biology
container_volume 25
creator Natan, Eviatar
Endoh, Tamaki
Haim-Vilmovsky, Liora
Flock, Tilman
Chalancon, Guilhem
Hopper, Jonathan T. S.
Kintses, Bálint
Horvath, Peter
Daruka, Lejla
Fekete, Gergely
Pál, Csaba
Papp, Balázs
Oszi, Erika
Magyar, Zoltán
Marsh, Joseph A.
Elcock, Adrian H.
Babu, M. Madan
Robinson, Carol V.
Sugimoto, Naoki
Teichmann, Sarah A.
description Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in Escherichia coli and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization. In vivo, in vitro and in silico experiments demonstrate that interface residues of homomeric proteins are enriched toward protein C termini to avoid premature assembly and aggregation.
doi_str_mv 10.1038/s41594-018-0029-5
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5995306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382235</galeid><sourcerecordid>A593382235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-23b1b7dd895d6959468d23b24f5927ea64fded721bb5d830c45cbba78394e1243</originalsourceid><addsrcrecordid>eNp1kk1rFTEYhYNYbK3-ADcy4EYXU_M5k2yEcqlaKAh-4DJkZt65TZlJrnlniv33zXjb215RskhInnN4cziEvGL0hFGh36NkysiSMl1Syk2pnpAjpqQqjdHq6e5sxCF5jniVGaVq8YwcciNFXuqI_FzFKbmAg5t8DG4oNilO4EPhEGFshpvCj5uIgAVcx2H-A6Wboo0Bs86HCYsYiss4xhGSb-_l-IIc9G5AeHm3H5MfH8--rz6XF18-na9OL8q2EvVUctGwpu46bVRXmfyZSnf5jsteGV6Dq2TfQVdz1jSq04K2UrVN42otjATGpTgmH7a-m7kZoWsh5LEGu0l-zHPa6Lzdfwn-0q7jtVXGKEGrbPD2ziDFXzPgZEePLQyDCxBntJxSZhinckHf_IVexTnl0DLFtDY1r4V5oNZuAOtDvwTcLqb2VBkhNOdCZerkH1ReHYw-pwu9z_d7gnd7gsxM8HtauxnRnn_7us-yLdumiJig3-XBqF2aY7fNsbk5dmmOXTSvHwe5U9xXJQN8C2B-CmtID7__v-st2dPOjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188972739</pqid></control><display><type>article</type><title>Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink</source><creator>Natan, Eviatar ; Endoh, Tamaki ; Haim-Vilmovsky, Liora ; Flock, Tilman ; Chalancon, Guilhem ; Hopper, Jonathan T. S. ; Kintses, Bálint ; Horvath, Peter ; Daruka, Lejla ; Fekete, Gergely ; Pál, Csaba ; Papp, Balázs ; Oszi, Erika ; Magyar, Zoltán ; Marsh, Joseph A. ; Elcock, Adrian H. ; Babu, M. Madan ; Robinson, Carol V. ; Sugimoto, Naoki ; Teichmann, Sarah A.</creator><creatorcontrib>Natan, Eviatar ; Endoh, Tamaki ; Haim-Vilmovsky, Liora ; Flock, Tilman ; Chalancon, Guilhem ; Hopper, Jonathan T. S. ; Kintses, Bálint ; Horvath, Peter ; Daruka, Lejla ; Fekete, Gergely ; Pál, Csaba ; Papp, Balázs ; Oszi, Erika ; Magyar, Zoltán ; Marsh, Joseph A. ; Elcock, Adrian H. ; Babu, M. Madan ; Robinson, Carol V. ; Sugimoto, Naoki ; Teichmann, Sarah A.</creatorcontrib><description>Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in Escherichia coli and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization. In vivo, in vitro and in silico experiments demonstrate that interface residues of homomeric proteins are enriched toward protein C termini to avoid premature assembly and aggregation.</description><identifier>ISSN: 1545-9993</identifier><identifier>ISSN: 1545-9985</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-018-0029-5</identifier><identifier>PMID: 29434345</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/31 ; 13/51 ; 14/19 ; 14/35 ; 631/45/470 ; 631/45/470/2284 ; 631/45/612 ; 82/58 ; 82/80 ; 82/83 ; 96 ; Analysis ; Assembly ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Chains ; Design optimization ; E coli ; Escherichia coli ; Evolution, Molecular ; Folding ; Influence ; Life Sciences ; Membrane Biology ; Models, Molecular ; Molecular Chaperones - metabolism ; Multiprotein Complexes - chemistry ; Oligomerization ; Oligomers ; Protein Biosynthesis ; Protein C ; Protein Domains ; Protein Engineering ; Protein Folding ; Protein Multimerization ; Protein Structure ; Protein Subunits - biosynthesis ; Protein Subunits - chemistry ; Proteins ; Residues ; Ribosomes - metabolism ; RNA, Messenger - metabolism ; Solubility</subject><ispartof>Nature structural &amp; molecular biology, 2018-03, Vol.25 (3), p.279-288</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-23b1b7dd895d6959468d23b24f5927ea64fded721bb5d830c45cbba78394e1243</citedby><cites>FETCH-LOGICAL-c637t-23b1b7dd895d6959468d23b24f5927ea64fded721bb5d830c45cbba78394e1243</cites><orcidid>0000-0003-3398-0968 ; 0000-0003-0556-6196 ; 0000-0002-0323-0034 ; 0000-0003-4132-0628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-018-0029-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-018-0029-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29434345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Natan, Eviatar</creatorcontrib><creatorcontrib>Endoh, Tamaki</creatorcontrib><creatorcontrib>Haim-Vilmovsky, Liora</creatorcontrib><creatorcontrib>Flock, Tilman</creatorcontrib><creatorcontrib>Chalancon, Guilhem</creatorcontrib><creatorcontrib>Hopper, Jonathan T. S.</creatorcontrib><creatorcontrib>Kintses, Bálint</creatorcontrib><creatorcontrib>Horvath, Peter</creatorcontrib><creatorcontrib>Daruka, Lejla</creatorcontrib><creatorcontrib>Fekete, Gergely</creatorcontrib><creatorcontrib>Pál, Csaba</creatorcontrib><creatorcontrib>Papp, Balázs</creatorcontrib><creatorcontrib>Oszi, Erika</creatorcontrib><creatorcontrib>Magyar, Zoltán</creatorcontrib><creatorcontrib>Marsh, Joseph A.</creatorcontrib><creatorcontrib>Elcock, Adrian H.</creatorcontrib><creatorcontrib>Babu, M. Madan</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Sugimoto, Naoki</creatorcontrib><creatorcontrib>Teichmann, Sarah A.</creatorcontrib><title>Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in Escherichia coli and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization. In vivo, in vitro and in silico experiments demonstrate that interface residues of homomeric proteins are enriched toward protein C termini to avoid premature assembly and aggregation.</description><subject>13/31</subject><subject>13/51</subject><subject>14/19</subject><subject>14/35</subject><subject>631/45/470</subject><subject>631/45/470/2284</subject><subject>631/45/612</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>96</subject><subject>Analysis</subject><subject>Assembly</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chains</subject><subject>Design optimization</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Evolution, Molecular</subject><subject>Folding</subject><subject>Influence</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Models, Molecular</subject><subject>Molecular Chaperones - metabolism</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Oligomerization</subject><subject>Oligomers</subject><subject>Protein Biosynthesis</subject><subject>Protein C</subject><subject>Protein Domains</subject><subject>Protein Engineering</subject><subject>Protein Folding</subject><subject>Protein Multimerization</subject><subject>Protein Structure</subject><subject>Protein Subunits - biosynthesis</subject><subject>Protein Subunits - chemistry</subject><subject>Proteins</subject><subject>Residues</subject><subject>Ribosomes - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Solubility</subject><issn>1545-9993</issn><issn>1545-9985</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kk1rFTEYhYNYbK3-ADcy4EYXU_M5k2yEcqlaKAh-4DJkZt65TZlJrnlniv33zXjb215RskhInnN4cziEvGL0hFGh36NkysiSMl1Syk2pnpAjpqQqjdHq6e5sxCF5jniVGaVq8YwcciNFXuqI_FzFKbmAg5t8DG4oNilO4EPhEGFshpvCj5uIgAVcx2H-A6Wboo0Bs86HCYsYiss4xhGSb-_l-IIc9G5AeHm3H5MfH8--rz6XF18-na9OL8q2EvVUctGwpu46bVRXmfyZSnf5jsteGV6Dq2TfQVdz1jSq04K2UrVN42otjATGpTgmH7a-m7kZoWsh5LEGu0l-zHPa6Lzdfwn-0q7jtVXGKEGrbPD2ziDFXzPgZEePLQyDCxBntJxSZhinckHf_IVexTnl0DLFtDY1r4V5oNZuAOtDvwTcLqb2VBkhNOdCZerkH1ReHYw-pwu9z_d7gnd7gsxM8HtauxnRnn_7us-yLdumiJig3-XBqF2aY7fNsbk5dmmOXTSvHwe5U9xXJQN8C2B-CmtID7__v-st2dPOjw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Natan, Eviatar</creator><creator>Endoh, Tamaki</creator><creator>Haim-Vilmovsky, Liora</creator><creator>Flock, Tilman</creator><creator>Chalancon, Guilhem</creator><creator>Hopper, Jonathan T. S.</creator><creator>Kintses, Bálint</creator><creator>Horvath, Peter</creator><creator>Daruka, Lejla</creator><creator>Fekete, Gergely</creator><creator>Pál, Csaba</creator><creator>Papp, Balázs</creator><creator>Oszi, Erika</creator><creator>Magyar, Zoltán</creator><creator>Marsh, Joseph A.</creator><creator>Elcock, Adrian H.</creator><creator>Babu, M. Madan</creator><creator>Robinson, Carol V.</creator><creator>Sugimoto, Naoki</creator><creator>Teichmann, Sarah A.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3398-0968</orcidid><orcidid>https://orcid.org/0000-0003-0556-6196</orcidid><orcidid>https://orcid.org/0000-0002-0323-0034</orcidid><orcidid>https://orcid.org/0000-0003-4132-0628</orcidid></search><sort><creationdate>20180301</creationdate><title>Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins</title><author>Natan, Eviatar ; Endoh, Tamaki ; Haim-Vilmovsky, Liora ; Flock, Tilman ; Chalancon, Guilhem ; Hopper, Jonathan T. S. ; Kintses, Bálint ; Horvath, Peter ; Daruka, Lejla ; Fekete, Gergely ; Pál, Csaba ; Papp, Balázs ; Oszi, Erika ; Magyar, Zoltán ; Marsh, Joseph A. ; Elcock, Adrian H. ; Babu, M. Madan ; Robinson, Carol V. ; Sugimoto, Naoki ; Teichmann, Sarah A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-23b1b7dd895d6959468d23b24f5927ea64fded721bb5d830c45cbba78394e1243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/31</topic><topic>13/51</topic><topic>14/19</topic><topic>14/35</topic><topic>631/45/470</topic><topic>631/45/470/2284</topic><topic>631/45/612</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>96</topic><topic>Analysis</topic><topic>Assembly</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chains</topic><topic>Design optimization</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Evolution, Molecular</topic><topic>Folding</topic><topic>Influence</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Models, Molecular</topic><topic>Molecular Chaperones - metabolism</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Oligomerization</topic><topic>Oligomers</topic><topic>Protein Biosynthesis</topic><topic>Protein C</topic><topic>Protein Domains</topic><topic>Protein Engineering</topic><topic>Protein Folding</topic><topic>Protein Multimerization</topic><topic>Protein Structure</topic><topic>Protein Subunits - biosynthesis</topic><topic>Protein Subunits - chemistry</topic><topic>Proteins</topic><topic>Residues</topic><topic>Ribosomes - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Natan, Eviatar</creatorcontrib><creatorcontrib>Endoh, Tamaki</creatorcontrib><creatorcontrib>Haim-Vilmovsky, Liora</creatorcontrib><creatorcontrib>Flock, Tilman</creatorcontrib><creatorcontrib>Chalancon, Guilhem</creatorcontrib><creatorcontrib>Hopper, Jonathan T. S.</creatorcontrib><creatorcontrib>Kintses, Bálint</creatorcontrib><creatorcontrib>Horvath, Peter</creatorcontrib><creatorcontrib>Daruka, Lejla</creatorcontrib><creatorcontrib>Fekete, Gergely</creatorcontrib><creatorcontrib>Pál, Csaba</creatorcontrib><creatorcontrib>Papp, Balázs</creatorcontrib><creatorcontrib>Oszi, Erika</creatorcontrib><creatorcontrib>Magyar, Zoltán</creatorcontrib><creatorcontrib>Marsh, Joseph A.</creatorcontrib><creatorcontrib>Elcock, Adrian H.</creatorcontrib><creatorcontrib>Babu, M. Madan</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><creatorcontrib>Sugimoto, Naoki</creatorcontrib><creatorcontrib>Teichmann, Sarah A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Natan, Eviatar</au><au>Endoh, Tamaki</au><au>Haim-Vilmovsky, Liora</au><au>Flock, Tilman</au><au>Chalancon, Guilhem</au><au>Hopper, Jonathan T. S.</au><au>Kintses, Bálint</au><au>Horvath, Peter</au><au>Daruka, Lejla</au><au>Fekete, Gergely</au><au>Pál, Csaba</au><au>Papp, Balázs</au><au>Oszi, Erika</au><au>Magyar, Zoltán</au><au>Marsh, Joseph A.</au><au>Elcock, Adrian H.</au><au>Babu, M. Madan</au><au>Robinson, Carol V.</au><au>Sugimoto, Naoki</au><au>Teichmann, Sarah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>25</volume><issue>3</issue><spage>279</spage><epage>288</epage><pages>279-288</pages><issn>1545-9993</issn><issn>1545-9985</issn><eissn>1545-9985</eissn><abstract>Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in Escherichia coli and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization. In vivo, in vitro and in silico experiments demonstrate that interface residues of homomeric proteins are enriched toward protein C termini to avoid premature assembly and aggregation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29434345</pmid><doi>10.1038/s41594-018-0029-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3398-0968</orcidid><orcidid>https://orcid.org/0000-0003-0556-6196</orcidid><orcidid>https://orcid.org/0000-0002-0323-0034</orcidid><orcidid>https://orcid.org/0000-0003-4132-0628</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2018-03, Vol.25 (3), p.279-288
issn 1545-9993
1545-9985
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5995306
source MEDLINE; Nature; SpringerLink
subjects 13/31
13/51
14/19
14/35
631/45/470
631/45/470/2284
631/45/612
82/58
82/80
82/83
96
Analysis
Assembly
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Chains
Design optimization
E coli
Escherichia coli
Evolution, Molecular
Folding
Influence
Life Sciences
Membrane Biology
Models, Molecular
Molecular Chaperones - metabolism
Multiprotein Complexes - chemistry
Oligomerization
Oligomers
Protein Biosynthesis
Protein C
Protein Domains
Protein Engineering
Protein Folding
Protein Multimerization
Protein Structure
Protein Subunits - biosynthesis
Protein Subunits - chemistry
Proteins
Residues
Ribosomes - metabolism
RNA, Messenger - metabolism
Solubility
title Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cotranslational%20protein%20assembly%20imposes%20evolutionary%20constraints%20on%20homomeric%20proteins&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Natan,%20Eviatar&rft.date=2018-03-01&rft.volume=25&rft.issue=3&rft.spage=279&rft.epage=288&rft.pages=279-288&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-018-0029-5&rft_dat=%3Cgale_pubme%3EA593382235%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188972739&rft_id=info:pmid/29434345&rft_galeid=A593382235&rfr_iscdi=true