Rho GTPases Mediate the Mechanosensitive Lineage Commitment of Neural Stem Cells

Adult neural stem cells (NSCs) play important roles in learning and memory and are negatively impacted by neurological disease. It is known that biochemical and genetic factors regulate self‐renewal and differentiation, and it has recently been suggested that mechanical and solid‐state cues, such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cells (Dayton, Ohio) Ohio), 2011-11, Vol.29 (11), p.1886-1897
Hauptverfasser: Keung, Albert J., de Juan‐Pardo, Elena M., Schaffer, David V., Kumar, Sanjay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1897
container_issue 11
container_start_page 1886
container_title Stem cells (Dayton, Ohio)
container_volume 29
creator Keung, Albert J.
de Juan‐Pardo, Elena M.
Schaffer, David V.
Kumar, Sanjay
description Adult neural stem cells (NSCs) play important roles in learning and memory and are negatively impacted by neurological disease. It is known that biochemical and genetic factors regulate self‐renewal and differentiation, and it has recently been suggested that mechanical and solid‐state cues, such as extracellular matrix (ECM) stiffness, can also regulate the functions of NSCs and other stem cell types. However, relatively little is known of the molecular mechanisms through which stem cells transduce mechanical inputs into fate decisions, the extent to which mechanical inputs instruct fate decisions versus select for or against lineage‐committed blast populations, or the in vivo relevance of mechanotransductive signaling molecules in native stem cell niches. Here we demonstrate that ECM‐derived mechanical signals act through Rho GTPases to activate the cellular contractility machinery in a key early window during differentiation to regulate NSC lineage commitment. Furthermore, culturing NSCs on increasingly stiff ECMs enhances RhoA and Cdc42 activation, increases NSC stiffness, and suppresses neurogenesis. Likewise, inhibiting RhoA and Cdc42 or downstream regulators of cellular contractility rescues NSCs from stiff matrix‐ and Rho GTPase‐induced neurosuppression. Importantly, Rho GTPase expression and ECM stiffness do not alter proliferation or apoptosis rates indicating that an instructive rather than selective mechanism modulates lineage distributions. Finally, in the adult brain, RhoA activation in hippocampal progenitors suppresses neurogenesis, analogous to its effect in vitro. These results establish Rho GTPase‐based mechanotransduction and cellular stiffness as biophysical regulators of NSC fate in vitro and RhoA as an important regulatory protein in the hippocampal stem cell niche. STEM CELLS 2011;29:1886–1897
doi_str_mv 10.1002/stem.746
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5990277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>900774364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4756-4679138c4d8b53e529862be373dca972a3fe6de05d38cd697f31a14081308a5d3</originalsourceid><addsrcrecordid>eNp1kFtLwzAYhoMonsFfILnTm2rS5ngjSJkHmDrcvA5Z-9VF2kabbrJ_b8am6IVX-Ugenrzfi9AJJReUkPQy9NBcSCa20D7lTCdMU7UdZyJEwonWe-gghDdCKONK7aK9lGoulE730eh55vHtZGQDBPwApbM94H4GcS5mtvUB2uB6twA8dC3YV8C5bxrXN9D22Ff4EeadrfE4BsA51HU4QjuVrQMcb85D9HIzmOR3yfDp9j6_HiYFk1wkTEhNM1WwUk15BjzVSqRTyGRWFlbL1GYViBIILyNUCi2rjFrKiKIZUTbeHqKrtfd9Pm2gLGKeGMS8d66x3dJ468zfl9bNzKtfGK41SaWMgrONoPMfcwi9aVwo4gq2BT8PRhMiJcsEi-T5miw6H0IH1c8vlJhV_2bVv4n9R_T0d6of8LvwCCRr4NPVsPxXZMaTwcNK-AUoupAU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900774364</pqid></control><display><type>article</type><title>Rho GTPases Mediate the Mechanosensitive Lineage Commitment of Neural Stem Cells</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Keung, Albert J. ; de Juan‐Pardo, Elena M. ; Schaffer, David V. ; Kumar, Sanjay</creator><creatorcontrib>Keung, Albert J. ; de Juan‐Pardo, Elena M. ; Schaffer, David V. ; Kumar, Sanjay</creatorcontrib><description>Adult neural stem cells (NSCs) play important roles in learning and memory and are negatively impacted by neurological disease. It is known that biochemical and genetic factors regulate self‐renewal and differentiation, and it has recently been suggested that mechanical and solid‐state cues, such as extracellular matrix (ECM) stiffness, can also regulate the functions of NSCs and other stem cell types. However, relatively little is known of the molecular mechanisms through which stem cells transduce mechanical inputs into fate decisions, the extent to which mechanical inputs instruct fate decisions versus select for or against lineage‐committed blast populations, or the in vivo relevance of mechanotransductive signaling molecules in native stem cell niches. Here we demonstrate that ECM‐derived mechanical signals act through Rho GTPases to activate the cellular contractility machinery in a key early window during differentiation to regulate NSC lineage commitment. Furthermore, culturing NSCs on increasingly stiff ECMs enhances RhoA and Cdc42 activation, increases NSC stiffness, and suppresses neurogenesis. Likewise, inhibiting RhoA and Cdc42 or downstream regulators of cellular contractility rescues NSCs from stiff matrix‐ and Rho GTPase‐induced neurosuppression. Importantly, Rho GTPase expression and ECM stiffness do not alter proliferation or apoptosis rates indicating that an instructive rather than selective mechanism modulates lineage distributions. Finally, in the adult brain, RhoA activation in hippocampal progenitors suppresses neurogenesis, analogous to its effect in vitro. These results establish Rho GTPase‐based mechanotransduction and cellular stiffness as biophysical regulators of NSC fate in vitro and RhoA as an important regulatory protein in the hippocampal stem cell niche. STEM CELLS 2011;29:1886–1897</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1002/stem.746</identifier><identifier>PMID: 21956892</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adipose stem cells ; Animals ; Apoptosis - genetics ; Apoptosis - physiology ; cdc42 GTP-Binding Protein - genetics ; cdc42 GTP-Binding Protein - metabolism ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; Cell Proliferation ; Cells, Cultured ; Cellular mechanotransduction ; Elastic modulus ; Extracellular matrix ; Extracellular Matrix - metabolism ; Female ; Fluorescent Antibody Technique ; Mechanotransduction, Cellular - genetics ; Mechanotransduction, Cellular - physiology ; Microscopy, Atomic Force ; Neural stem cells ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neurogenesis - genetics ; Neurogenesis - physiology ; Rats ; Rats, Inbred F344 ; rho GTP-Binding Proteins - genetics ; rho GTP-Binding Proteins - metabolism ; Rho GTP‐binding proteins ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism</subject><ispartof>Stem cells (Dayton, Ohio), 2011-11, Vol.29 (11), p.1886-1897</ispartof><rights>Copyright © 2011 AlphaMed Press</rights><rights>Copyright © 2011 AlphaMed Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4756-4679138c4d8b53e529862be373dca972a3fe6de05d38cd697f31a14081308a5d3</citedby><cites>FETCH-LOGICAL-c4756-4679138c4d8b53e529862be373dca972a3fe6de05d38cd697f31a14081308a5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21956892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keung, Albert J.</creatorcontrib><creatorcontrib>de Juan‐Pardo, Elena M.</creatorcontrib><creatorcontrib>Schaffer, David V.</creatorcontrib><creatorcontrib>Kumar, Sanjay</creatorcontrib><title>Rho GTPases Mediate the Mechanosensitive Lineage Commitment of Neural Stem Cells</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>Adult neural stem cells (NSCs) play important roles in learning and memory and are negatively impacted by neurological disease. It is known that biochemical and genetic factors regulate self‐renewal and differentiation, and it has recently been suggested that mechanical and solid‐state cues, such as extracellular matrix (ECM) stiffness, can also regulate the functions of NSCs and other stem cell types. However, relatively little is known of the molecular mechanisms through which stem cells transduce mechanical inputs into fate decisions, the extent to which mechanical inputs instruct fate decisions versus select for or against lineage‐committed blast populations, or the in vivo relevance of mechanotransductive signaling molecules in native stem cell niches. Here we demonstrate that ECM‐derived mechanical signals act through Rho GTPases to activate the cellular contractility machinery in a key early window during differentiation to regulate NSC lineage commitment. Furthermore, culturing NSCs on increasingly stiff ECMs enhances RhoA and Cdc42 activation, increases NSC stiffness, and suppresses neurogenesis. Likewise, inhibiting RhoA and Cdc42 or downstream regulators of cellular contractility rescues NSCs from stiff matrix‐ and Rho GTPase‐induced neurosuppression. Importantly, Rho GTPase expression and ECM stiffness do not alter proliferation or apoptosis rates indicating that an instructive rather than selective mechanism modulates lineage distributions. Finally, in the adult brain, RhoA activation in hippocampal progenitors suppresses neurogenesis, analogous to its effect in vitro. These results establish Rho GTPase‐based mechanotransduction and cellular stiffness as biophysical regulators of NSC fate in vitro and RhoA as an important regulatory protein in the hippocampal stem cell niche. STEM CELLS 2011;29:1886–1897</description><subject>Adipose stem cells</subject><subject>Animals</subject><subject>Apoptosis - genetics</subject><subject>Apoptosis - physiology</subject><subject>cdc42 GTP-Binding Protein - genetics</subject><subject>cdc42 GTP-Binding Protein - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Cellular mechanotransduction</subject><subject>Elastic modulus</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Female</subject><subject>Fluorescent Antibody Technique</subject><subject>Mechanotransduction, Cellular - genetics</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Microscopy, Atomic Force</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neurogenesis - genetics</subject><subject>Neurogenesis - physiology</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>rho GTP-Binding Proteins - genetics</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>Rho GTP‐binding proteins</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kFtLwzAYhoMonsFfILnTm2rS5ngjSJkHmDrcvA5Z-9VF2kabbrJ_b8am6IVX-Ugenrzfi9AJJReUkPQy9NBcSCa20D7lTCdMU7UdZyJEwonWe-gghDdCKONK7aK9lGoulE730eh55vHtZGQDBPwApbM94H4GcS5mtvUB2uB6twA8dC3YV8C5bxrXN9D22Ff4EeadrfE4BsA51HU4QjuVrQMcb85D9HIzmOR3yfDp9j6_HiYFk1wkTEhNM1WwUk15BjzVSqRTyGRWFlbL1GYViBIILyNUCi2rjFrKiKIZUTbeHqKrtfd9Pm2gLGKeGMS8d66x3dJ468zfl9bNzKtfGK41SaWMgrONoPMfcwi9aVwo4gq2BT8PRhMiJcsEi-T5miw6H0IH1c8vlJhV_2bVv4n9R_T0d6of8LvwCCRr4NPVsPxXZMaTwcNK-AUoupAU</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Keung, Albert J.</creator><creator>de Juan‐Pardo, Elena M.</creator><creator>Schaffer, David V.</creator><creator>Kumar, Sanjay</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201111</creationdate><title>Rho GTPases Mediate the Mechanosensitive Lineage Commitment of Neural Stem Cells</title><author>Keung, Albert J. ; de Juan‐Pardo, Elena M. ; Schaffer, David V. ; Kumar, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4756-4679138c4d8b53e529862be373dca972a3fe6de05d38cd697f31a14081308a5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adipose stem cells</topic><topic>Animals</topic><topic>Apoptosis - genetics</topic><topic>Apoptosis - physiology</topic><topic>cdc42 GTP-Binding Protein - genetics</topic><topic>cdc42 GTP-Binding Protein - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Cellular mechanotransduction</topic><topic>Elastic modulus</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Female</topic><topic>Fluorescent Antibody Technique</topic><topic>Mechanotransduction, Cellular - genetics</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Microscopy, Atomic Force</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neurogenesis - genetics</topic><topic>Neurogenesis - physiology</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>rho GTP-Binding Proteins - genetics</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>Rho GTP‐binding proteins</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keung, Albert J.</creatorcontrib><creatorcontrib>de Juan‐Pardo, Elena M.</creatorcontrib><creatorcontrib>Schaffer, David V.</creatorcontrib><creatorcontrib>Kumar, Sanjay</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keung, Albert J.</au><au>de Juan‐Pardo, Elena M.</au><au>Schaffer, David V.</au><au>Kumar, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rho GTPases Mediate the Mechanosensitive Lineage Commitment of Neural Stem Cells</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2011-11</date><risdate>2011</risdate><volume>29</volume><issue>11</issue><spage>1886</spage><epage>1897</epage><pages>1886-1897</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>Adult neural stem cells (NSCs) play important roles in learning and memory and are negatively impacted by neurological disease. It is known that biochemical and genetic factors regulate self‐renewal and differentiation, and it has recently been suggested that mechanical and solid‐state cues, such as extracellular matrix (ECM) stiffness, can also regulate the functions of NSCs and other stem cell types. However, relatively little is known of the molecular mechanisms through which stem cells transduce mechanical inputs into fate decisions, the extent to which mechanical inputs instruct fate decisions versus select for or against lineage‐committed blast populations, or the in vivo relevance of mechanotransductive signaling molecules in native stem cell niches. Here we demonstrate that ECM‐derived mechanical signals act through Rho GTPases to activate the cellular contractility machinery in a key early window during differentiation to regulate NSC lineage commitment. Furthermore, culturing NSCs on increasingly stiff ECMs enhances RhoA and Cdc42 activation, increases NSC stiffness, and suppresses neurogenesis. Likewise, inhibiting RhoA and Cdc42 or downstream regulators of cellular contractility rescues NSCs from stiff matrix‐ and Rho GTPase‐induced neurosuppression. Importantly, Rho GTPase expression and ECM stiffness do not alter proliferation or apoptosis rates indicating that an instructive rather than selective mechanism modulates lineage distributions. Finally, in the adult brain, RhoA activation in hippocampal progenitors suppresses neurogenesis, analogous to its effect in vitro. These results establish Rho GTPase‐based mechanotransduction and cellular stiffness as biophysical regulators of NSC fate in vitro and RhoA as an important regulatory protein in the hippocampal stem cell niche. STEM CELLS 2011;29:1886–1897</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21956892</pmid><doi>10.1002/stem.746</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1066-5099
ispartof Stem cells (Dayton, Ohio), 2011-11, Vol.29 (11), p.1886-1897
issn 1066-5099
1549-4918
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5990277
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adipose stem cells
Animals
Apoptosis - genetics
Apoptosis - physiology
cdc42 GTP-Binding Protein - genetics
cdc42 GTP-Binding Protein - metabolism
Cell Differentiation - genetics
Cell Differentiation - physiology
Cell Proliferation
Cells, Cultured
Cellular mechanotransduction
Elastic modulus
Extracellular matrix
Extracellular Matrix - metabolism
Female
Fluorescent Antibody Technique
Mechanotransduction, Cellular - genetics
Mechanotransduction, Cellular - physiology
Microscopy, Atomic Force
Neural stem cells
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neurogenesis - genetics
Neurogenesis - physiology
Rats
Rats, Inbred F344
rho GTP-Binding Proteins - genetics
rho GTP-Binding Proteins - metabolism
Rho GTP‐binding proteins
rhoA GTP-Binding Protein - genetics
rhoA GTP-Binding Protein - metabolism
title Rho GTPases Mediate the Mechanosensitive Lineage Commitment of Neural Stem Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A18%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rho%20GTPases%20Mediate%20the%20Mechanosensitive%20Lineage%20Commitment%20of%20Neural%20Stem%20Cells&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Keung,%20Albert%20J.&rft.date=2011-11&rft.volume=29&rft.issue=11&rft.spage=1886&rft.epage=1897&rft.pages=1886-1897&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1002/stem.746&rft_dat=%3Cproquest_pubme%3E900774364%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900774364&rft_id=info:pmid/21956892&rfr_iscdi=true