BDNF release and signaling are required for the antidepressant actions of GLYX-13
Conventional antidepressant medications, which act on monoaminergic systems, display significant limitations, including a time lag of weeks to months and low rates of therapeutic efficacy. GLYX-13 is a novel glutamatergic compound that acts as an N -methyl- d -aspartate (NMDA) modulator with glycine...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2018-10, Vol.23 (10), p.2007-2017 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2017 |
---|---|
container_issue | 10 |
container_start_page | 2007 |
container_title | Molecular psychiatry |
container_volume | 23 |
creator | Kato, T Fogaça, M V Deyama, S Li, X-Y Fukumoto, K Duman, R S |
description | Conventional antidepressant medications, which act on monoaminergic systems, display significant limitations, including a time lag of weeks to months and low rates of therapeutic efficacy. GLYX-13 is a novel glutamatergic compound that acts as an
N
-methyl-
d
-aspartate (NMDA) modulator with glycine-like partial agonist properties; like the NMDA receptor antagonist ketamine GLYX-13 produces rapid antidepressant actions in depressed patients and in preclinical rodent models. However, the mechanisms underlying the antidepressant actions of GLYX-13 have not been characterized. Here we use a combination of neutralizing antibody (nAb), mutant mouse and pharmacological approaches to test the role of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TrkB) signaling in the actions of GLYX-13. The results demonstrate that the antidepressant effects of GLYX-13 are blocked by intra-medial prefrontal cortex (intra-mPFC) infusion of an anti-BDNF nAb or in mice with a knock-in of the BDNF Val66Met allele, which blocks the processing and activity-dependent release of BDNF. We also demonstrate that pharmacological inhibitors of BDNF-TrkB signaling or of
l
-type voltage-dependent Ca
2+
channels (VDCCs) block the antidepressant behavioral actions of GLYX-13. Finally, we examined the role of the Rho GTPase proteins by injecting a selective inhibitor into the mPFC and found that activation of Rac1 but not RhoA is involved in the antidepressant effects of GLYX-13. Together, these findings indicate that enhanced release of BDNF through exocytosis caused by activation of VDCCs and subsequent TrkB-Rac1 signaling is required for the rapid and sustained antidepressant effects of GLYX-13. |
doi_str_mv | 10.1038/mp.2017.220 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5988860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573176037</galeid><sourcerecordid>A573176037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-e3261e9edbdcda31c08aaffd421ab58367bf9b6cbe32959bc87af7c1c76355f13</originalsourceid><addsrcrecordid>eNptkt1r1jAUxoMobk6vvJeCN4Lra9I0TXIzmHMfwosiKOhVSNOTLqNNuqQV_O9NeefmxshFDnl-5zmck4PQa4I3BFPxYZw2FSZ8U1X4CdonNW9Kxrh4mmPKZFkTUe-hFyldYbyK7Dnaq2SVM2uxj759_PTlrIgwgE5QaN8VyfVeD873hY6QlevFRegKG2IxX67I7DqYIqSUw0Kb2QWfimCL8-2vnyWhL9Ezq4cEr27uA_Tj7PT7yUW5_Xr--eR4WxrG5VwCrRoCErq2M52mxGChtbVdXRHdMkEb3lrZNqbNoGSyNYJryw0xvKGMWUIP0NHOd1raEToDfo56UFN0o45_VNBO3Ve8u1R9-K2YFEI0OBu8uzGI4XqBNKvRJQPDoD2EJSkiOcUVa-SKvn2AXoUl5jElVRG6EljWd1SvB1DO25DrmtVUHTNOCc9FeaY2j1D5dDA6EzxYl9_vJbzfJZgYUopgb3skWK0boMZJrRug8gZk-s3_Y7ll_315Bg53QMqS7yHe9fKY31_zwbju</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136903094</pqid></control><display><type>article</type><title>BDNF release and signaling are required for the antidepressant actions of GLYX-13</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kato, T ; Fogaça, M V ; Deyama, S ; Li, X-Y ; Fukumoto, K ; Duman, R S</creator><creatorcontrib>Kato, T ; Fogaça, M V ; Deyama, S ; Li, X-Y ; Fukumoto, K ; Duman, R S</creatorcontrib><description>Conventional antidepressant medications, which act on monoaminergic systems, display significant limitations, including a time lag of weeks to months and low rates of therapeutic efficacy. GLYX-13 is a novel glutamatergic compound that acts as an
N
-methyl-
d
-aspartate (NMDA) modulator with glycine-like partial agonist properties; like the NMDA receptor antagonist ketamine GLYX-13 produces rapid antidepressant actions in depressed patients and in preclinical rodent models. However, the mechanisms underlying the antidepressant actions of GLYX-13 have not been characterized. Here we use a combination of neutralizing antibody (nAb), mutant mouse and pharmacological approaches to test the role of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TrkB) signaling in the actions of GLYX-13. The results demonstrate that the antidepressant effects of GLYX-13 are blocked by intra-medial prefrontal cortex (intra-mPFC) infusion of an anti-BDNF nAb or in mice with a knock-in of the BDNF Val66Met allele, which blocks the processing and activity-dependent release of BDNF. We also demonstrate that pharmacological inhibitors of BDNF-TrkB signaling or of
l
-type voltage-dependent Ca
2+
channels (VDCCs) block the antidepressant behavioral actions of GLYX-13. Finally, we examined the role of the Rho GTPase proteins by injecting a selective inhibitor into the mPFC and found that activation of Rac1 but not RhoA is involved in the antidepressant effects of GLYX-13. Together, these findings indicate that enhanced release of BDNF through exocytosis caused by activation of VDCCs and subsequent TrkB-Rac1 signaling is required for the rapid and sustained antidepressant effects of GLYX-13.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/mp.2017.220</identifier><identifier>PMID: 29203848</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Activation ; Animal models ; Animals ; Antibodies ; Antidepressants ; Antidepressive Agents - metabolism ; Antidepressive Agents - pharmacology ; Aspartate ; Behavioral Sciences ; Biological Psychology ; Brain-derived neurotrophic factor ; Brain-Derived Neurotrophic Factor - drug effects ; Brain-Derived Neurotrophic Factor - metabolism ; Brain-Derived Neurotrophic Factor - physiology ; Calcium channels ; Calcium channels (L-type) ; Calcium channels (voltage-gated) ; Calcium ions ; Care and treatment ; Depression ; Depression - drug therapy ; Displays (Marketing) ; Exocytosis ; Glutamatergic transmission ; Glutamic acid receptors ; Glutamic acid receptors (ionotropic) ; Glycine ; Guanosine triphosphatases ; Ketamine ; Ketamine - pharmacology ; Kinases ; Major depressive disorder ; Male ; Medical schools ; Medicine ; Medicine & Public Health ; Membrane Glycoproteins - drug effects ; Membrane Glycoproteins - metabolism ; Mental depression ; Mice ; Mice, Inbred C57BL ; Muscle proteins ; N-methyl-D-aspartate ; N-Methyl-D-aspartic acid receptors ; N-Methylaspartate - antagonists & inhibitors ; Neurosciences ; Oligopeptides - metabolism ; Oligopeptides - pharmacology ; Pharmacotherapy ; Prefrontal cortex ; Prefrontal Cortex - metabolism ; Proteins ; Psychiatry ; Rac1 protein ; Rats ; Rats, Sprague-Dawley ; Receptor, trkB - drug effects ; Receptors, N-Methyl-D-Aspartate - metabolism ; RhoA protein ; Signal Transduction - drug effects ; Time lag ; TrkB receptors ; Tropomyosin</subject><ispartof>Molecular psychiatry, 2018-10, Vol.23 (10), p.2007-2017</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-e3261e9edbdcda31c08aaffd421ab58367bf9b6cbe32959bc87af7c1c76355f13</citedby><cites>FETCH-LOGICAL-c579t-e3261e9edbdcda31c08aaffd421ab58367bf9b6cbe32959bc87af7c1c76355f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/mp.2017.220$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/mp.2017.220$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29203848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kato, T</creatorcontrib><creatorcontrib>Fogaça, M V</creatorcontrib><creatorcontrib>Deyama, S</creatorcontrib><creatorcontrib>Li, X-Y</creatorcontrib><creatorcontrib>Fukumoto, K</creatorcontrib><creatorcontrib>Duman, R S</creatorcontrib><title>BDNF release and signaling are required for the antidepressant actions of GLYX-13</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Conventional antidepressant medications, which act on monoaminergic systems, display significant limitations, including a time lag of weeks to months and low rates of therapeutic efficacy. GLYX-13 is a novel glutamatergic compound that acts as an
N
-methyl-
d
-aspartate (NMDA) modulator with glycine-like partial agonist properties; like the NMDA receptor antagonist ketamine GLYX-13 produces rapid antidepressant actions in depressed patients and in preclinical rodent models. However, the mechanisms underlying the antidepressant actions of GLYX-13 have not been characterized. Here we use a combination of neutralizing antibody (nAb), mutant mouse and pharmacological approaches to test the role of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TrkB) signaling in the actions of GLYX-13. The results demonstrate that the antidepressant effects of GLYX-13 are blocked by intra-medial prefrontal cortex (intra-mPFC) infusion of an anti-BDNF nAb or in mice with a knock-in of the BDNF Val66Met allele, which blocks the processing and activity-dependent release of BDNF. We also demonstrate that pharmacological inhibitors of BDNF-TrkB signaling or of
l
-type voltage-dependent Ca
2+
channels (VDCCs) block the antidepressant behavioral actions of GLYX-13. Finally, we examined the role of the Rho GTPase proteins by injecting a selective inhibitor into the mPFC and found that activation of Rac1 but not RhoA is involved in the antidepressant effects of GLYX-13. Together, these findings indicate that enhanced release of BDNF through exocytosis caused by activation of VDCCs and subsequent TrkB-Rac1 signaling is required for the rapid and sustained antidepressant effects of GLYX-13.</description><subject>Activation</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antidepressants</subject><subject>Antidepressive Agents - metabolism</subject><subject>Antidepressive Agents - pharmacology</subject><subject>Aspartate</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Brain-derived neurotrophic factor</subject><subject>Brain-Derived Neurotrophic Factor - drug effects</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Brain-Derived Neurotrophic Factor - physiology</subject><subject>Calcium channels</subject><subject>Calcium channels (L-type)</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium ions</subject><subject>Care and treatment</subject><subject>Depression</subject><subject>Depression - drug therapy</subject><subject>Displays (Marketing)</subject><subject>Exocytosis</subject><subject>Glutamatergic transmission</subject><subject>Glutamic acid receptors</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Glycine</subject><subject>Guanosine triphosphatases</subject><subject>Ketamine</subject><subject>Ketamine - pharmacology</subject><subject>Kinases</subject><subject>Major depressive disorder</subject><subject>Male</subject><subject>Medical schools</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Membrane Glycoproteins - drug effects</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Mental depression</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Muscle proteins</subject><subject>N-methyl-D-aspartate</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>N-Methylaspartate - antagonists & inhibitors</subject><subject>Neurosciences</subject><subject>Oligopeptides - metabolism</subject><subject>Oligopeptides - pharmacology</subject><subject>Pharmacotherapy</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Proteins</subject><subject>Psychiatry</subject><subject>Rac1 protein</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, trkB - drug effects</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>RhoA protein</subject><subject>Signal Transduction - drug effects</subject><subject>Time lag</subject><subject>TrkB receptors</subject><subject>Tropomyosin</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkt1r1jAUxoMobk6vvJeCN4Lra9I0TXIzmHMfwosiKOhVSNOTLqNNuqQV_O9NeefmxshFDnl-5zmck4PQa4I3BFPxYZw2FSZ8U1X4CdonNW9Kxrh4mmPKZFkTUe-hFyldYbyK7Dnaq2SVM2uxj759_PTlrIgwgE5QaN8VyfVeD873hY6QlevFRegKG2IxX67I7DqYIqSUw0Kb2QWfimCL8-2vnyWhL9Ezq4cEr27uA_Tj7PT7yUW5_Xr--eR4WxrG5VwCrRoCErq2M52mxGChtbVdXRHdMkEb3lrZNqbNoGSyNYJryw0xvKGMWUIP0NHOd1raEToDfo56UFN0o45_VNBO3Ve8u1R9-K2YFEI0OBu8uzGI4XqBNKvRJQPDoD2EJSkiOcUVa-SKvn2AXoUl5jElVRG6EljWd1SvB1DO25DrmtVUHTNOCc9FeaY2j1D5dDA6EzxYl9_vJbzfJZgYUopgb3skWK0boMZJrRug8gZk-s3_Y7ll_315Bg53QMqS7yHe9fKY31_zwbju</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Kato, T</creator><creator>Fogaça, M V</creator><creator>Deyama, S</creator><creator>Li, X-Y</creator><creator>Fukumoto, K</creator><creator>Duman, R S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20181001</creationdate><title>BDNF release and signaling are required for the antidepressant actions of GLYX-13</title><author>Kato, T ; Fogaça, M V ; Deyama, S ; Li, X-Y ; Fukumoto, K ; Duman, R S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-e3261e9edbdcda31c08aaffd421ab58367bf9b6cbe32959bc87af7c1c76355f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activation</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antidepressants</topic><topic>Antidepressive Agents - metabolism</topic><topic>Antidepressive Agents - pharmacology</topic><topic>Aspartate</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Brain-derived neurotrophic factor</topic><topic>Brain-Derived Neurotrophic Factor - drug effects</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Brain-Derived Neurotrophic Factor - physiology</topic><topic>Calcium channels</topic><topic>Calcium channels (L-type)</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium ions</topic><topic>Care and treatment</topic><topic>Depression</topic><topic>Depression - drug therapy</topic><topic>Displays (Marketing)</topic><topic>Exocytosis</topic><topic>Glutamatergic transmission</topic><topic>Glutamic acid receptors</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Glycine</topic><topic>Guanosine triphosphatases</topic><topic>Ketamine</topic><topic>Ketamine - pharmacology</topic><topic>Kinases</topic><topic>Major depressive disorder</topic><topic>Male</topic><topic>Medical schools</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Membrane Glycoproteins - drug effects</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Mental depression</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Muscle proteins</topic><topic>N-methyl-D-aspartate</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>N-Methylaspartate - antagonists & inhibitors</topic><topic>Neurosciences</topic><topic>Oligopeptides - metabolism</topic><topic>Oligopeptides - pharmacology</topic><topic>Pharmacotherapy</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Proteins</topic><topic>Psychiatry</topic><topic>Rac1 protein</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, trkB - drug effects</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>RhoA protein</topic><topic>Signal Transduction - drug effects</topic><topic>Time lag</topic><topic>TrkB receptors</topic><topic>Tropomyosin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, T</creatorcontrib><creatorcontrib>Fogaça, M V</creatorcontrib><creatorcontrib>Deyama, S</creatorcontrib><creatorcontrib>Li, X-Y</creatorcontrib><creatorcontrib>Fukumoto, K</creatorcontrib><creatorcontrib>Duman, R S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, T</au><au>Fogaça, M V</au><au>Deyama, S</au><au>Li, X-Y</au><au>Fukumoto, K</au><au>Duman, R S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BDNF release and signaling are required for the antidepressant actions of GLYX-13</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>23</volume><issue>10</issue><spage>2007</spage><epage>2017</epage><pages>2007-2017</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Conventional antidepressant medications, which act on monoaminergic systems, display significant limitations, including a time lag of weeks to months and low rates of therapeutic efficacy. GLYX-13 is a novel glutamatergic compound that acts as an
N
-methyl-
d
-aspartate (NMDA) modulator with glycine-like partial agonist properties; like the NMDA receptor antagonist ketamine GLYX-13 produces rapid antidepressant actions in depressed patients and in preclinical rodent models. However, the mechanisms underlying the antidepressant actions of GLYX-13 have not been characterized. Here we use a combination of neutralizing antibody (nAb), mutant mouse and pharmacological approaches to test the role of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TrkB) signaling in the actions of GLYX-13. The results demonstrate that the antidepressant effects of GLYX-13 are blocked by intra-medial prefrontal cortex (intra-mPFC) infusion of an anti-BDNF nAb or in mice with a knock-in of the BDNF Val66Met allele, which blocks the processing and activity-dependent release of BDNF. We also demonstrate that pharmacological inhibitors of BDNF-TrkB signaling or of
l
-type voltage-dependent Ca
2+
channels (VDCCs) block the antidepressant behavioral actions of GLYX-13. Finally, we examined the role of the Rho GTPase proteins by injecting a selective inhibitor into the mPFC and found that activation of Rac1 but not RhoA is involved in the antidepressant effects of GLYX-13. Together, these findings indicate that enhanced release of BDNF through exocytosis caused by activation of VDCCs and subsequent TrkB-Rac1 signaling is required for the rapid and sustained antidepressant effects of GLYX-13.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29203848</pmid><doi>10.1038/mp.2017.220</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4184 |
ispartof | Molecular psychiatry, 2018-10, Vol.23 (10), p.2007-2017 |
issn | 1359-4184 1476-5578 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5988860 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Activation Animal models Animals Antibodies Antidepressants Antidepressive Agents - metabolism Antidepressive Agents - pharmacology Aspartate Behavioral Sciences Biological Psychology Brain-derived neurotrophic factor Brain-Derived Neurotrophic Factor - drug effects Brain-Derived Neurotrophic Factor - metabolism Brain-Derived Neurotrophic Factor - physiology Calcium channels Calcium channels (L-type) Calcium channels (voltage-gated) Calcium ions Care and treatment Depression Depression - drug therapy Displays (Marketing) Exocytosis Glutamatergic transmission Glutamic acid receptors Glutamic acid receptors (ionotropic) Glycine Guanosine triphosphatases Ketamine Ketamine - pharmacology Kinases Major depressive disorder Male Medical schools Medicine Medicine & Public Health Membrane Glycoproteins - drug effects Membrane Glycoproteins - metabolism Mental depression Mice Mice, Inbred C57BL Muscle proteins N-methyl-D-aspartate N-Methyl-D-aspartic acid receptors N-Methylaspartate - antagonists & inhibitors Neurosciences Oligopeptides - metabolism Oligopeptides - pharmacology Pharmacotherapy Prefrontal cortex Prefrontal Cortex - metabolism Proteins Psychiatry Rac1 protein Rats Rats, Sprague-Dawley Receptor, trkB - drug effects Receptors, N-Methyl-D-Aspartate - metabolism RhoA protein Signal Transduction - drug effects Time lag TrkB receptors Tropomyosin |
title | BDNF release and signaling are required for the antidepressant actions of GLYX-13 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A11%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BDNF%20release%20and%20signaling%20are%20required%20for%20the%20antidepressant%20actions%20of%20GLYX-13&rft.jtitle=Molecular%20psychiatry&rft.au=Kato,%20T&rft.date=2018-10-01&rft.volume=23&rft.issue=10&rft.spage=2007&rft.epage=2017&rft.pages=2007-2017&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/mp.2017.220&rft_dat=%3Cgale_pubme%3EA573176037%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136903094&rft_id=info:pmid/29203848&rft_galeid=A573176037&rfr_iscdi=true |