Investigation of high‐pressure planetary ices by cryo‐recovery. I. An apparatus for X‐ray powder diffraction from 40 to 315 K, allowing `cold loading' of samples

A low‐temperature stage for X‐ray powder diffraction in Bragg–Brentano reflection geometry is described. The temperature range covered is 40–315 K, with a temperature stability at the sample within ±0.1 K of the set point. The stage operates by means of a Gifford–McMahon (GM) closed‐cycle He refrige...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2018-06, Vol.51 (3), p.685-691
Hauptverfasser: Wood, Ian G., Fortes, A. Dominic, Dobson, David P., Wang, Weiwei, Pajdzik, Lucjan, Cosier, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue 3
container_start_page 685
container_title Journal of applied crystallography
container_volume 51
creator Wood, Ian G.
Fortes, A. Dominic
Dobson, David P.
Wang, Weiwei
Pajdzik, Lucjan
Cosier, John
description A low‐temperature stage for X‐ray powder diffraction in Bragg–Brentano reflection geometry is described. The temperature range covered is 40–315 K, with a temperature stability at the sample within ±0.1 K of the set point. The stage operates by means of a Gifford–McMahon (GM) closed‐cycle He refrigerator; it requires no refrigerants and so can run for an extended period (in practice at least 5 d) without intervention by the user. The sample is cooled both by thermal conduction through the metal sample holder and by the presence of He exchange gas, at ambient pressure, within the sample chamber; the consumption of He gas is extremely low, being only 0.1 l min−1 during normal operation. A unique feature of this cold stage is that samples may be introduced into (and removed from) the stage at any temperature in the range 80–300 K, and thus materials which are not stable at room temperature, such as high‐pressure phases that are recoverable to ambient pressure after quenching to liquid nitrogen temperatures, can be readily examined. A further advantage of this arrangement is that, by enabling the use of pre‐cooled samples, it greatly reduces the turnaround time when making measurements on a series of specimens at low temperature. A low‐temperature stage for X‐ray powder diffraction in the range 40–315 K is described. A unique feature of the apparatus is that samples may be introduced into the stage (and removed from it) at any temperature above 80 K.
doi_str_mv 10.1107/S1600576718003965
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5988005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2050516712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4770-97e36809b608374231ccb1ea0b56ed2e6ef55c5c0529c124645007b27d9b075c3</originalsourceid><addsrcrecordid>eNqFkk1u1DAUxyMEoqVwADbIEgtYMMOzE9vxBqka8TG0EhIFiZ1xHGfGlRMHO5lRdhyBW3AvToLDlKrAgpXt59_7v88se4hhiTHw5xeYAVDOOC4BcsHorex4Ni1m2-0b96PsXoyXAJhxQu5mR0SUgiXP4-z7utuZONiNGqzvkG_Q1m62P75-64OJcQwG9U51ZlBhQlabiKoJ6TD5RASj_c6EaYnWS3TaIdX3KqhhjKjxAX2aCTWh3u9rE1BtmyYo_StIE3yLCkCDRzmm6OwZUs75ve026LP2rkbOqzq9nszpRNX2zsT72Z1GuWgeXJ0n2cdXLz-s3izO371er07PF7rgHBaCm5yVICoGZc4LkmOtK2wUVJSZmhhmGko11UCJ0JgUrKAAvCK8FhVwqvOT7MVBtx-r1tTadENQTvbBtqkF0isr__zp7FZu_E5SUaYh0CTw9Eog-C9jaq1sbdTGzV30Y5QEaCFomZMyoY__Qi_9GLpU3kwBTdPCJFH4QOngYwymuU4Gg5zXQP6zBsnn0c0qrj1-zz0B4gDsrTPT_xXl29V7cnZBaQn5T14wwT8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050516712</pqid></control><display><type>article</type><title>Investigation of high‐pressure planetary ices by cryo‐recovery. I. An apparatus for X‐ray powder diffraction from 40 to 315 K, allowing `cold loading' of samples</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Wood, Ian G. ; Fortes, A. Dominic ; Dobson, David P. ; Wang, Weiwei ; Pajdzik, Lucjan ; Cosier, John</creator><creatorcontrib>Wood, Ian G. ; Fortes, A. Dominic ; Dobson, David P. ; Wang, Weiwei ; Pajdzik, Lucjan ; Cosier, John</creatorcontrib><description>A low‐temperature stage for X‐ray powder diffraction in Bragg–Brentano reflection geometry is described. The temperature range covered is 40–315 K, with a temperature stability at the sample within ±0.1 K of the set point. The stage operates by means of a Gifford–McMahon (GM) closed‐cycle He refrigerator; it requires no refrigerants and so can run for an extended period (in practice at least 5 d) without intervention by the user. The sample is cooled both by thermal conduction through the metal sample holder and by the presence of He exchange gas, at ambient pressure, within the sample chamber; the consumption of He gas is extremely low, being only 0.1 l min−1 during normal operation. A unique feature of this cold stage is that samples may be introduced into (and removed from) the stage at any temperature in the range 80–300 K, and thus materials which are not stable at room temperature, such as high‐pressure phases that are recoverable to ambient pressure after quenching to liquid nitrogen temperatures, can be readily examined. A further advantage of this arrangement is that, by enabling the use of pre‐cooled samples, it greatly reduces the turnaround time when making measurements on a series of specimens at low temperature. A low‐temperature stage for X‐ray powder diffraction in the range 40–315 K is described. A unique feature of the apparatus is that samples may be introduced into the stage (and removed from it) at any temperature above 80 K.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576718003965</identifier><identifier>PMID: 29896057</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>cold loading ; Conduction ; Conduction cooling ; Diffraction ; Liquid nitrogen ; Low temperature ; low temperatures ; planetary ices ; Powder ; Pressure ; Refrigerants ; Research Papers ; Temperature effects ; X‐ray powder diffraction</subject><ispartof>Journal of applied crystallography, 2018-06, Vol.51 (3), p.685-691</ispartof><rights>I. G. Wood et al. 2018</rights><rights>Copyright Blackwell Publishing Ltd. Jun 2018</rights><rights>I. G. Wood et al. 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4770-97e36809b608374231ccb1ea0b56ed2e6ef55c5c0529c124645007b27d9b075c3</citedby><cites>FETCH-LOGICAL-c4770-97e36809b608374231ccb1ea0b56ed2e6ef55c5c0529c124645007b27d9b075c3</cites><orcidid>0000-0002-3057-6970 ; 0000-0002-6094-0358 ; 0000-0001-8734-8947 ; 0000-0001-5907-2285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576718003965$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576718003965$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29896057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wood, Ian G.</creatorcontrib><creatorcontrib>Fortes, A. Dominic</creatorcontrib><creatorcontrib>Dobson, David P.</creatorcontrib><creatorcontrib>Wang, Weiwei</creatorcontrib><creatorcontrib>Pajdzik, Lucjan</creatorcontrib><creatorcontrib>Cosier, John</creatorcontrib><title>Investigation of high‐pressure planetary ices by cryo‐recovery. I. An apparatus for X‐ray powder diffraction from 40 to 315 K, allowing `cold loading' of samples</title><title>Journal of applied crystallography</title><addtitle>J Appl Crystallogr</addtitle><description>A low‐temperature stage for X‐ray powder diffraction in Bragg–Brentano reflection geometry is described. The temperature range covered is 40–315 K, with a temperature stability at the sample within ±0.1 K of the set point. The stage operates by means of a Gifford–McMahon (GM) closed‐cycle He refrigerator; it requires no refrigerants and so can run for an extended period (in practice at least 5 d) without intervention by the user. The sample is cooled both by thermal conduction through the metal sample holder and by the presence of He exchange gas, at ambient pressure, within the sample chamber; the consumption of He gas is extremely low, being only 0.1 l min−1 during normal operation. A unique feature of this cold stage is that samples may be introduced into (and removed from) the stage at any temperature in the range 80–300 K, and thus materials which are not stable at room temperature, such as high‐pressure phases that are recoverable to ambient pressure after quenching to liquid nitrogen temperatures, can be readily examined. A further advantage of this arrangement is that, by enabling the use of pre‐cooled samples, it greatly reduces the turnaround time when making measurements on a series of specimens at low temperature. A low‐temperature stage for X‐ray powder diffraction in the range 40–315 K is described. A unique feature of the apparatus is that samples may be introduced into the stage (and removed from it) at any temperature above 80 K.</description><subject>cold loading</subject><subject>Conduction</subject><subject>Conduction cooling</subject><subject>Diffraction</subject><subject>Liquid nitrogen</subject><subject>Low temperature</subject><subject>low temperatures</subject><subject>planetary ices</subject><subject>Powder</subject><subject>Pressure</subject><subject>Refrigerants</subject><subject>Research Papers</subject><subject>Temperature effects</subject><subject>X‐ray powder diffraction</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkk1u1DAUxyMEoqVwADbIEgtYMMOzE9vxBqka8TG0EhIFiZ1xHGfGlRMHO5lRdhyBW3AvToLDlKrAgpXt59_7v88se4hhiTHw5xeYAVDOOC4BcsHorex4Ni1m2-0b96PsXoyXAJhxQu5mR0SUgiXP4-z7utuZONiNGqzvkG_Q1m62P75-64OJcQwG9U51ZlBhQlabiKoJ6TD5RASj_c6EaYnWS3TaIdX3KqhhjKjxAX2aCTWh3u9rE1BtmyYo_StIE3yLCkCDRzmm6OwZUs75ve026LP2rkbOqzq9nszpRNX2zsT72Z1GuWgeXJ0n2cdXLz-s3izO371er07PF7rgHBaCm5yVICoGZc4LkmOtK2wUVJSZmhhmGko11UCJ0JgUrKAAvCK8FhVwqvOT7MVBtx-r1tTadENQTvbBtqkF0isr__zp7FZu_E5SUaYh0CTw9Eog-C9jaq1sbdTGzV30Y5QEaCFomZMyoY__Qi_9GLpU3kwBTdPCJFH4QOngYwymuU4Gg5zXQP6zBsnn0c0qrj1-zz0B4gDsrTPT_xXl29V7cnZBaQn5T14wwT8</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Wood, Ian G.</creator><creator>Fortes, A. Dominic</creator><creator>Dobson, David P.</creator><creator>Wang, Weiwei</creator><creator>Pajdzik, Lucjan</creator><creator>Cosier, John</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3057-6970</orcidid><orcidid>https://orcid.org/0000-0002-6094-0358</orcidid><orcidid>https://orcid.org/0000-0001-8734-8947</orcidid><orcidid>https://orcid.org/0000-0001-5907-2285</orcidid></search><sort><creationdate>201806</creationdate><title>Investigation of high‐pressure planetary ices by cryo‐recovery. I. An apparatus for X‐ray powder diffraction from 40 to 315 K, allowing `cold loading' of samples</title><author>Wood, Ian G. ; Fortes, A. Dominic ; Dobson, David P. ; Wang, Weiwei ; Pajdzik, Lucjan ; Cosier, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4770-97e36809b608374231ccb1ea0b56ed2e6ef55c5c0529c124645007b27d9b075c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>cold loading</topic><topic>Conduction</topic><topic>Conduction cooling</topic><topic>Diffraction</topic><topic>Liquid nitrogen</topic><topic>Low temperature</topic><topic>low temperatures</topic><topic>planetary ices</topic><topic>Powder</topic><topic>Pressure</topic><topic>Refrigerants</topic><topic>Research Papers</topic><topic>Temperature effects</topic><topic>X‐ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wood, Ian G.</creatorcontrib><creatorcontrib>Fortes, A. Dominic</creatorcontrib><creatorcontrib>Dobson, David P.</creatorcontrib><creatorcontrib>Wang, Weiwei</creatorcontrib><creatorcontrib>Pajdzik, Lucjan</creatorcontrib><creatorcontrib>Cosier, John</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wood, Ian G.</au><au>Fortes, A. Dominic</au><au>Dobson, David P.</au><au>Wang, Weiwei</au><au>Pajdzik, Lucjan</au><au>Cosier, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of high‐pressure planetary ices by cryo‐recovery. I. An apparatus for X‐ray powder diffraction from 40 to 315 K, allowing `cold loading' of samples</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J Appl Crystallogr</addtitle><date>2018-06</date><risdate>2018</risdate><volume>51</volume><issue>3</issue><spage>685</spage><epage>691</epage><pages>685-691</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>A low‐temperature stage for X‐ray powder diffraction in Bragg–Brentano reflection geometry is described. The temperature range covered is 40–315 K, with a temperature stability at the sample within ±0.1 K of the set point. The stage operates by means of a Gifford–McMahon (GM) closed‐cycle He refrigerator; it requires no refrigerants and so can run for an extended period (in practice at least 5 d) without intervention by the user. The sample is cooled both by thermal conduction through the metal sample holder and by the presence of He exchange gas, at ambient pressure, within the sample chamber; the consumption of He gas is extremely low, being only 0.1 l min−1 during normal operation. A unique feature of this cold stage is that samples may be introduced into (and removed from) the stage at any temperature in the range 80–300 K, and thus materials which are not stable at room temperature, such as high‐pressure phases that are recoverable to ambient pressure after quenching to liquid nitrogen temperatures, can be readily examined. A further advantage of this arrangement is that, by enabling the use of pre‐cooled samples, it greatly reduces the turnaround time when making measurements on a series of specimens at low temperature. A low‐temperature stage for X‐ray powder diffraction in the range 40–315 K is described. A unique feature of the apparatus is that samples may be introduced into the stage (and removed from it) at any temperature above 80 K.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>29896057</pmid><doi>10.1107/S1600576718003965</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3057-6970</orcidid><orcidid>https://orcid.org/0000-0002-6094-0358</orcidid><orcidid>https://orcid.org/0000-0001-8734-8947</orcidid><orcidid>https://orcid.org/0000-0001-5907-2285</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2018-06, Vol.51 (3), p.685-691
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5988005
source Wiley Online Library All Journals; Alma/SFX Local Collection
subjects cold loading
Conduction
Conduction cooling
Diffraction
Liquid nitrogen
Low temperature
low temperatures
planetary ices
Powder
Pressure
Refrigerants
Research Papers
Temperature effects
X‐ray powder diffraction
title Investigation of high‐pressure planetary ices by cryo‐recovery. I. An apparatus for X‐ray powder diffraction from 40 to 315 K, allowing `cold loading' of samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20high%E2%80%90pressure%20planetary%20ices%20by%20cryo%E2%80%90recovery.%20I.%20An%20apparatus%20for%20X%E2%80%90ray%20powder%20diffraction%20from%2040%20to%20315%20K,%20allowing%20%60cold%20loading'%20of%20samples&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Wood,%20Ian%20G.&rft.date=2018-06&rft.volume=51&rft.issue=3&rft.spage=685&rft.epage=691&rft.pages=685-691&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576718003965&rft_dat=%3Cproquest_pubme%3E2050516712%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2050516712&rft_id=info:pmid/29896057&rfr_iscdi=true