Aux/IAA Proteins Are Phosphorylated by Phytochrome In vitro
Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived transcription factors that are induced as a primary response to the plant growth hormone IAA or auxin. Gain-of-function mutations in Arabidopsis genes, SHY2/IAA3, AXR3/IAA17, and AXR2/IAA7 cause pleiotropic phenotypes consistent with enha...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2000-12, Vol.124 (4), p.1728-1738 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1738 |
---|---|
container_issue | 4 |
container_start_page | 1728 |
container_title | Plant physiology (Bethesda) |
container_volume | 124 |
creator | Colón-Carmona, Adán Donna L. Chen Yeh, Kuo-Chen Abel, Steffen |
description | Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived transcription factors that are induced as a primary response to the plant growth hormone IAA or auxin. Gain-of-function mutations in Arabidopsis genes, SHY2/IAA3, AXR3/IAA17, and AXR2/IAA7 cause pleiotropic phenotypes consistent with enhanced auxin responses, possibly by increasing Aux/IAA protein stability. Semidominant mutations shy2-1D, shy2-2, axr3-1, and axr2-1 induce ectopic light responses in dark-grown seedlings. Because genetic studies suggest that the shy2-1D and shy2-2 mutations bypass phytochrome requirement for certain aspects of photomorphogenesis, we tested whether SHY2/IAA3 and related Aux/IAA proteins interact directly with phytochrome and whether they are substrates for its protein kinase activity. Here we show that recombinant Aux/IAA proteins from Arabidopsis and pea (Pisum sativum) interact in vitro with recombinant phytochrome A from oat (Avena sativa). We further show that recombinant SHY2/IAA3, AXR3/IAA17, IAA1, IAA9, and Ps-IAA4 are phosphorylated by recombinant oat phytochrome A in vitro. Deletion analysis of Ps-IAA4 indicates that phytochrome A phosphorylation occurs on the N-terminal half of the protein. Metabolic labeling and immunoprecipitation studies with affinity-purified antibodies to IAA3 demonstrate increased in vivo steady-state levels of mutant IAA3 in shy2-2 plants and phosphorylation of the SHY2-2 protein in vivo. Phytochrome-dependent phosphorylation of Aux/IAA proteins is proposed to provide one molecular mechanism for integrating auxin and light signaling in plant development. |
doi_str_mv | 10.1104/pp.124.4.1728 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4279583</jstor_id><sourcerecordid>4279583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-259adac9806c5ce0d872220104932570e5b6db0043c74218cb248d87c9a842893</originalsourceid><addsrcrecordid>eNpdkc1PwyAYh4nRuPlx9GZM48FbO6CwQvTSLH4sWeIOeiaUMtulLRXaxf73smyZH1wg7_u88JAfAFcIRghBMmnbCGESkQglmB2BMaIxDjEl7BiMIfRnyBgfgTPn1hBCFCNyCkbIL-rrY3Cf9l-TeZoGS2s6XTYuSK0OloVxbWHsUMlO50E2-MrQGVVYU-tg3gSbsrPmApysZOX05X4_B-9Pj2-zl3Dx-jyfpYtQeZfOy3CZS8UZnCqqNMxZgjGGXp7HmCZQ02yaZxCSWCUEI6YyTJiHFJeMYMbjc_Cwu7fts1rnSjedlZVobVlLOwgjS_G305SF-DAbQTlLoB-_249b89lr14m6dEpXlWy06Z1IMEkIxdt3bv-Ba9Pbxn9NeK2pd6axh8IdpKxxzurVwQNBsU1EtK3wiQgitol4_ua3_A-9j8AD1ztg7TpjD32CE05ZHH8DcYaOvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218622053</pqid></control><display><type>article</type><title>Aux/IAA Proteins Are Phosphorylated by Phytochrome In vitro</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Colón-Carmona, Adán ; Donna L. Chen ; Yeh, Kuo-Chen ; Abel, Steffen</creator><creatorcontrib>Colón-Carmona, Adán ; Donna L. Chen ; Yeh, Kuo-Chen ; Abel, Steffen</creatorcontrib><description>Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived transcription factors that are induced as a primary response to the plant growth hormone IAA or auxin. Gain-of-function mutations in Arabidopsis genes, SHY2/IAA3, AXR3/IAA17, and AXR2/IAA7 cause pleiotropic phenotypes consistent with enhanced auxin responses, possibly by increasing Aux/IAA protein stability. Semidominant mutations shy2-1D, shy2-2, axr3-1, and axr2-1 induce ectopic light responses in dark-grown seedlings. Because genetic studies suggest that the shy2-1D and shy2-2 mutations bypass phytochrome requirement for certain aspects of photomorphogenesis, we tested whether SHY2/IAA3 and related Aux/IAA proteins interact directly with phytochrome and whether they are substrates for its protein kinase activity. Here we show that recombinant Aux/IAA proteins from Arabidopsis and pea (Pisum sativum) interact in vitro with recombinant phytochrome A from oat (Avena sativa). We further show that recombinant SHY2/IAA3, AXR3/IAA17, IAA1, IAA9, and Ps-IAA4 are phosphorylated by recombinant oat phytochrome A in vitro. Deletion analysis of Ps-IAA4 indicates that phytochrome A phosphorylation occurs on the N-terminal half of the protein. Metabolic labeling and immunoprecipitation studies with affinity-purified antibodies to IAA3 demonstrate increased in vivo steady-state levels of mutant IAA3 in shy2-2 plants and phosphorylation of the SHY2-2 protein in vivo. Phytochrome-dependent phosphorylation of Aux/IAA proteins is proposed to provide one molecular mechanism for integrating auxin and light signaling in plant development.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.124.4.1728</identifier><identifier>PMID: 11115889</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>Acetic acid ; Antibodies ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Articles ; Arabidopsis Proteins ; Auxins ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Genetic mutation ; Immunoprecipitation ; Insulin antibodies ; Mutation ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Oats ; Phosphoproteins - metabolism ; Phosphorylation ; Phytochrome - genetics ; Phytochrome - metabolism ; Phytochrome A ; Pisum sativum - genetics ; Pisum sativum - metabolism ; Plant growth ; Plant Growth Regulators ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Precipitin Tests ; Protein Kinases - metabolism ; Proteins ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Seedlings ; Theology ; Transcription Factors - chemistry ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Plant physiology (Bethesda), 2000-12, Vol.124 (4), p.1728-1738</ispartof><rights>Copyright 2000 American Society of Plant Physiologists</rights><rights>Copyright American Society of Plant Physiologists Dec 2000</rights><rights>Copyright © 2000, American Society of Plant Physiologists 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-259adac9806c5ce0d872220104932570e5b6db0043c74218cb248d87c9a842893</citedby><cites>FETCH-LOGICAL-c532t-259adac9806c5ce0d872220104932570e5b6db0043c74218cb248d87c9a842893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4279583$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4279583$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27922,27923,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11115889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Colón-Carmona, Adán</creatorcontrib><creatorcontrib>Donna L. Chen</creatorcontrib><creatorcontrib>Yeh, Kuo-Chen</creatorcontrib><creatorcontrib>Abel, Steffen</creatorcontrib><title>Aux/IAA Proteins Are Phosphorylated by Phytochrome In vitro</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived transcription factors that are induced as a primary response to the plant growth hormone IAA or auxin. Gain-of-function mutations in Arabidopsis genes, SHY2/IAA3, AXR3/IAA17, and AXR2/IAA7 cause pleiotropic phenotypes consistent with enhanced auxin responses, possibly by increasing Aux/IAA protein stability. Semidominant mutations shy2-1D, shy2-2, axr3-1, and axr2-1 induce ectopic light responses in dark-grown seedlings. Because genetic studies suggest that the shy2-1D and shy2-2 mutations bypass phytochrome requirement for certain aspects of photomorphogenesis, we tested whether SHY2/IAA3 and related Aux/IAA proteins interact directly with phytochrome and whether they are substrates for its protein kinase activity. Here we show that recombinant Aux/IAA proteins from Arabidopsis and pea (Pisum sativum) interact in vitro with recombinant phytochrome A from oat (Avena sativa). We further show that recombinant SHY2/IAA3, AXR3/IAA17, IAA1, IAA9, and Ps-IAA4 are phosphorylated by recombinant oat phytochrome A in vitro. Deletion analysis of Ps-IAA4 indicates that phytochrome A phosphorylation occurs on the N-terminal half of the protein. Metabolic labeling and immunoprecipitation studies with affinity-purified antibodies to IAA3 demonstrate increased in vivo steady-state levels of mutant IAA3 in shy2-2 plants and phosphorylation of the SHY2-2 protein in vivo. Phytochrome-dependent phosphorylation of Aux/IAA proteins is proposed to provide one molecular mechanism for integrating auxin and light signaling in plant development.</description><subject>Acetic acid</subject><subject>Antibodies</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Articles</subject><subject>Arabidopsis Proteins</subject><subject>Auxins</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Genetic mutation</subject><subject>Immunoprecipitation</subject><subject>Insulin antibodies</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oats</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation</subject><subject>Phytochrome - genetics</subject><subject>Phytochrome - metabolism</subject><subject>Phytochrome A</subject><subject>Pisum sativum - genetics</subject><subject>Pisum sativum - metabolism</subject><subject>Plant growth</subject><subject>Plant Growth Regulators</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Precipitin Tests</subject><subject>Protein Kinases - metabolism</subject><subject>Proteins</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Seedlings</subject><subject>Theology</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1PwyAYh4nRuPlx9GZM48FbO6CwQvTSLH4sWeIOeiaUMtulLRXaxf73smyZH1wg7_u88JAfAFcIRghBMmnbCGESkQglmB2BMaIxDjEl7BiMIfRnyBgfgTPn1hBCFCNyCkbIL-rrY3Cf9l-TeZoGS2s6XTYuSK0OloVxbWHsUMlO50E2-MrQGVVYU-tg3gSbsrPmApysZOX05X4_B-9Pj2-zl3Dx-jyfpYtQeZfOy3CZS8UZnCqqNMxZgjGGXp7HmCZQ02yaZxCSWCUEI6YyTJiHFJeMYMbjc_Cwu7fts1rnSjedlZVobVlLOwgjS_G305SF-DAbQTlLoB-_249b89lr14m6dEpXlWy06Z1IMEkIxdt3bv-Ba9Pbxn9NeK2pd6axh8IdpKxxzurVwQNBsU1EtK3wiQgitol4_ua3_A-9j8AD1ztg7TpjD32CE05ZHH8DcYaOvA</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Colón-Carmona, Adán</creator><creator>Donna L. Chen</creator><creator>Yeh, Kuo-Chen</creator><creator>Abel, Steffen</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001201</creationdate><title>Aux/IAA Proteins Are Phosphorylated by Phytochrome In vitro</title><author>Colón-Carmona, Adán ; Donna L. Chen ; Yeh, Kuo-Chen ; Abel, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-259adac9806c5ce0d872220104932570e5b6db0043c74218cb248d87c9a842893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acetic acid</topic><topic>Antibodies</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Articles</topic><topic>Arabidopsis Proteins</topic><topic>Auxins</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Genetic mutation</topic><topic>Immunoprecipitation</topic><topic>Insulin antibodies</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oats</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation</topic><topic>Phytochrome - genetics</topic><topic>Phytochrome - metabolism</topic><topic>Phytochrome A</topic><topic>Pisum sativum - genetics</topic><topic>Pisum sativum - metabolism</topic><topic>Plant growth</topic><topic>Plant Growth Regulators</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Precipitin Tests</topic><topic>Protein Kinases - metabolism</topic><topic>Proteins</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Seedlings</topic><topic>Theology</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colón-Carmona, Adán</creatorcontrib><creatorcontrib>Donna L. Chen</creatorcontrib><creatorcontrib>Yeh, Kuo-Chen</creatorcontrib><creatorcontrib>Abel, Steffen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colón-Carmona, Adán</au><au>Donna L. Chen</au><au>Yeh, Kuo-Chen</au><au>Abel, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aux/IAA Proteins Are Phosphorylated by Phytochrome In vitro</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-12-01</date><risdate>2000</risdate><volume>124</volume><issue>4</issue><spage>1728</spage><epage>1738</epage><pages>1728-1738</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived transcription factors that are induced as a primary response to the plant growth hormone IAA or auxin. Gain-of-function mutations in Arabidopsis genes, SHY2/IAA3, AXR3/IAA17, and AXR2/IAA7 cause pleiotropic phenotypes consistent with enhanced auxin responses, possibly by increasing Aux/IAA protein stability. Semidominant mutations shy2-1D, shy2-2, axr3-1, and axr2-1 induce ectopic light responses in dark-grown seedlings. Because genetic studies suggest that the shy2-1D and shy2-2 mutations bypass phytochrome requirement for certain aspects of photomorphogenesis, we tested whether SHY2/IAA3 and related Aux/IAA proteins interact directly with phytochrome and whether they are substrates for its protein kinase activity. Here we show that recombinant Aux/IAA proteins from Arabidopsis and pea (Pisum sativum) interact in vitro with recombinant phytochrome A from oat (Avena sativa). We further show that recombinant SHY2/IAA3, AXR3/IAA17, IAA1, IAA9, and Ps-IAA4 are phosphorylated by recombinant oat phytochrome A in vitro. Deletion analysis of Ps-IAA4 indicates that phytochrome A phosphorylation occurs on the N-terminal half of the protein. Metabolic labeling and immunoprecipitation studies with affinity-purified antibodies to IAA3 demonstrate increased in vivo steady-state levels of mutant IAA3 in shy2-2 plants and phosphorylation of the SHY2-2 protein in vivo. Phytochrome-dependent phosphorylation of Aux/IAA proteins is proposed to provide one molecular mechanism for integrating auxin and light signaling in plant development.</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>11115889</pmid><doi>10.1104/pp.124.4.1728</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2000-12, Vol.124 (4), p.1728-1738 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_59870 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Acetic acid Antibodies Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Articles Arabidopsis Proteins Auxins DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Genetic mutation Immunoprecipitation Insulin antibodies Mutation Nuclear Proteins - genetics Nuclear Proteins - metabolism Oats Phosphoproteins - metabolism Phosphorylation Phytochrome - genetics Phytochrome - metabolism Phytochrome A Pisum sativum - genetics Pisum sativum - metabolism Plant growth Plant Growth Regulators Plant Proteins - genetics Plant Proteins - metabolism Precipitin Tests Protein Kinases - metabolism Proteins Recombinant Proteins - genetics Recombinant Proteins - metabolism Seedlings Theology Transcription Factors - chemistry Transcription Factors - genetics Transcription Factors - metabolism |
title | Aux/IAA Proteins Are Phosphorylated by Phytochrome In vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aux/IAA%20Proteins%20Are%20Phosphorylated%20by%20Phytochrome%20In%20vitro&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Col%C3%B3n-Carmona,%20Ad%C3%A1n&rft.date=2000-12-01&rft.volume=124&rft.issue=4&rft.spage=1728&rft.epage=1738&rft.pages=1728-1738&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.124.4.1728&rft_dat=%3Cjstor_pubme%3E4279583%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218622053&rft_id=info:pmid/11115889&rft_jstor_id=4279583&rfr_iscdi=true |