Bootstrap inference when using multiple imputation
Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputa...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2018-06, Vol.37 (14), p.2252-2266 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2266 |
---|---|
container_issue | 14 |
container_start_page | 2252 |
container_title | Statistics in medicine |
container_volume | 37 |
creator | Schomaker, Michael Heumann, Christian |
description | Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g‐formula for inference, a method for which no standard errors are available. |
doi_str_mv | 10.1002/sim.7654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5986623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049618577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4384-8092d6995a25928f58c4290162ae8c5e40a6f3c5d9076db0ea050269a1055c783</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMotl7AJ5ABN26mnqST20bQ4g0UF-o6xDSjKTPJOJmx-PZGW-sFXJ3F-fj4z_kR2sMwwgDkKLp6xBkt1tAQg-Q5ECrW0RAI5znjmA7QVowzAIwp4ZtoQCQTaceGiJyG0MWu1U3mfGlb643N5s_WZ310_imr-6pzTWUzVzd9pzsX_A7aKHUV7e5ybqOH87P7yWV-fXtxNTm5zk0xFkUuQJIpk5JqQiURJRWmIBIwI9oKQ20BmpVjQ6cSOJs-gtVAgTCpMVBquBhvo-OFt-kfazs11qeYlWpaV-v2TQXt1O-Nd8_qKbwqKgVjZJwEh0tBG156GztVu2hsVWlvQx8VgfSHoiCCJfTgDzoLfevTeYkqJMOCcv4tNG2IsbXlKgwG9VGESkWojyISuv8z_Ar8-nwC8gUwd5V9-1ek7q5uPoXvV-KQ5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049618577</pqid></control><display><type>article</type><title>Bootstrap inference when using multiple imputation</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Schomaker, Michael ; Heumann, Christian</creator><creatorcontrib>Schomaker, Michael ; Heumann, Christian</creatorcontrib><description>Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g‐formula for inference, a method for which no standard errors are available.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.7654</identifier><identifier>PMID: 29682776</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Anti-Retroviral Agents ; Biometry - methods ; causal inference ; Computer Simulation ; g‐methods ; HIV ; HIV Infections - drug therapy ; Humans ; Missing data ; Models, Statistical ; Regression analysis ; resampling</subject><ispartof>Statistics in medicine, 2018-06, Vol.37 (14), p.2252-2266</ispartof><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4384-8092d6995a25928f58c4290162ae8c5e40a6f3c5d9076db0ea050269a1055c783</citedby><cites>FETCH-LOGICAL-c4384-8092d6995a25928f58c4290162ae8c5e40a6f3c5d9076db0ea050269a1055c783</cites><orcidid>0000-0002-8475-0591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.7654$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.7654$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29682776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schomaker, Michael</creatorcontrib><creatorcontrib>Heumann, Christian</creatorcontrib><title>Bootstrap inference when using multiple imputation</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g‐formula for inference, a method for which no standard errors are available.</description><subject>Anti-Retroviral Agents</subject><subject>Biometry - methods</subject><subject>causal inference</subject><subject>Computer Simulation</subject><subject>g‐methods</subject><subject>HIV</subject><subject>HIV Infections - drug therapy</subject><subject>Humans</subject><subject>Missing data</subject><subject>Models, Statistical</subject><subject>Regression analysis</subject><subject>resampling</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctKAzEUhoMotl7AJ5ABN26mnqST20bQ4g0UF-o6xDSjKTPJOJmx-PZGW-sFXJ3F-fj4z_kR2sMwwgDkKLp6xBkt1tAQg-Q5ECrW0RAI5znjmA7QVowzAIwp4ZtoQCQTaceGiJyG0MWu1U3mfGlb643N5s_WZ310_imr-6pzTWUzVzd9pzsX_A7aKHUV7e5ybqOH87P7yWV-fXtxNTm5zk0xFkUuQJIpk5JqQiURJRWmIBIwI9oKQ20BmpVjQ6cSOJs-gtVAgTCpMVBquBhvo-OFt-kfazs11qeYlWpaV-v2TQXt1O-Nd8_qKbwqKgVjZJwEh0tBG156GztVu2hsVWlvQx8VgfSHoiCCJfTgDzoLfevTeYkqJMOCcv4tNG2IsbXlKgwG9VGESkWojyISuv8z_Ar8-nwC8gUwd5V9-1ek7q5uPoXvV-KQ5g</recordid><startdate>20180630</startdate><enddate>20180630</enddate><creator>Schomaker, Michael</creator><creator>Heumann, Christian</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8475-0591</orcidid></search><sort><creationdate>20180630</creationdate><title>Bootstrap inference when using multiple imputation</title><author>Schomaker, Michael ; Heumann, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4384-8092d6995a25928f58c4290162ae8c5e40a6f3c5d9076db0ea050269a1055c783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anti-Retroviral Agents</topic><topic>Biometry - methods</topic><topic>causal inference</topic><topic>Computer Simulation</topic><topic>g‐methods</topic><topic>HIV</topic><topic>HIV Infections - drug therapy</topic><topic>Humans</topic><topic>Missing data</topic><topic>Models, Statistical</topic><topic>Regression analysis</topic><topic>resampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schomaker, Michael</creatorcontrib><creatorcontrib>Heumann, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schomaker, Michael</au><au>Heumann, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bootstrap inference when using multiple imputation</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2018-06-30</date><risdate>2018</risdate><volume>37</volume><issue>14</issue><spage>2252</spage><epage>2266</epage><pages>2252-2266</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g‐formula for inference, a method for which no standard errors are available.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29682776</pmid><doi>10.1002/sim.7654</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8475-0591</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2018-06, Vol.37 (14), p.2252-2266 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5986623 |
source | MEDLINE; Wiley Journals |
subjects | Anti-Retroviral Agents Biometry - methods causal inference Computer Simulation g‐methods HIV HIV Infections - drug therapy Humans Missing data Models, Statistical Regression analysis resampling |
title | Bootstrap inference when using multiple imputation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bootstrap%20inference%20when%20using%20multiple%20imputation&rft.jtitle=Statistics%20in%20medicine&rft.au=Schomaker,%20Michael&rft.date=2018-06-30&rft.volume=37&rft.issue=14&rft.spage=2252&rft.epage=2266&rft.pages=2252-2266&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.7654&rft_dat=%3Cproquest_pubme%3E2049618577%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049618577&rft_id=info:pmid/29682776&rfr_iscdi=true |