Bootstrap inference when using multiple imputation

Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2018-06, Vol.37 (14), p.2252-2266
Hauptverfasser: Schomaker, Michael, Heumann, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2266
container_issue 14
container_start_page 2252
container_title Statistics in medicine
container_volume 37
creator Schomaker, Michael
Heumann, Christian
description Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g‐formula for inference, a method for which no standard errors are available.
doi_str_mv 10.1002/sim.7654
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5986623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049618577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4384-8092d6995a25928f58c4290162ae8c5e40a6f3c5d9076db0ea050269a1055c783</originalsourceid><addsrcrecordid>eNp1kctKAzEUhoMotl7AJ5ABN26mnqST20bQ4g0UF-o6xDSjKTPJOJmx-PZGW-sFXJ3F-fj4z_kR2sMwwgDkKLp6xBkt1tAQg-Q5ECrW0RAI5znjmA7QVowzAIwp4ZtoQCQTaceGiJyG0MWu1U3mfGlb643N5s_WZ310_imr-6pzTWUzVzd9pzsX_A7aKHUV7e5ybqOH87P7yWV-fXtxNTm5zk0xFkUuQJIpk5JqQiURJRWmIBIwI9oKQ20BmpVjQ6cSOJs-gtVAgTCpMVBquBhvo-OFt-kfazs11qeYlWpaV-v2TQXt1O-Nd8_qKbwqKgVjZJwEh0tBG156GztVu2hsVWlvQx8VgfSHoiCCJfTgDzoLfevTeYkqJMOCcv4tNG2IsbXlKgwG9VGESkWojyISuv8z_Ar8-nwC8gUwd5V9-1ek7q5uPoXvV-KQ5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049618577</pqid></control><display><type>article</type><title>Bootstrap inference when using multiple imputation</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Schomaker, Michael ; Heumann, Christian</creator><creatorcontrib>Schomaker, Michael ; Heumann, Christian</creatorcontrib><description>Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g‐formula for inference, a method for which no standard errors are available.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.7654</identifier><identifier>PMID: 29682776</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Anti-Retroviral Agents ; Biometry - methods ; causal inference ; Computer Simulation ; g‐methods ; HIV ; HIV Infections - drug therapy ; Humans ; Missing data ; Models, Statistical ; Regression analysis ; resampling</subject><ispartof>Statistics in medicine, 2018-06, Vol.37 (14), p.2252-2266</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4384-8092d6995a25928f58c4290162ae8c5e40a6f3c5d9076db0ea050269a1055c783</citedby><cites>FETCH-LOGICAL-c4384-8092d6995a25928f58c4290162ae8c5e40a6f3c5d9076db0ea050269a1055c783</cites><orcidid>0000-0002-8475-0591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.7654$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.7654$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29682776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schomaker, Michael</creatorcontrib><creatorcontrib>Heumann, Christian</creatorcontrib><title>Bootstrap inference when using multiple imputation</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g‐formula for inference, a method for which no standard errors are available.</description><subject>Anti-Retroviral Agents</subject><subject>Biometry - methods</subject><subject>causal inference</subject><subject>Computer Simulation</subject><subject>g‐methods</subject><subject>HIV</subject><subject>HIV Infections - drug therapy</subject><subject>Humans</subject><subject>Missing data</subject><subject>Models, Statistical</subject><subject>Regression analysis</subject><subject>resampling</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctKAzEUhoMotl7AJ5ABN26mnqST20bQ4g0UF-o6xDSjKTPJOJmx-PZGW-sFXJ3F-fj4z_kR2sMwwgDkKLp6xBkt1tAQg-Q5ECrW0RAI5znjmA7QVowzAIwp4ZtoQCQTaceGiJyG0MWu1U3mfGlb643N5s_WZ310_imr-6pzTWUzVzd9pzsX_A7aKHUV7e5ybqOH87P7yWV-fXtxNTm5zk0xFkUuQJIpk5JqQiURJRWmIBIwI9oKQ20BmpVjQ6cSOJs-gtVAgTCpMVBquBhvo-OFt-kfazs11qeYlWpaV-v2TQXt1O-Nd8_qKbwqKgVjZJwEh0tBG156GztVu2hsVWlvQx8VgfSHoiCCJfTgDzoLfevTeYkqJMOCcv4tNG2IsbXlKgwG9VGESkWojyISuv8z_Ar8-nwC8gUwd5V9-1ek7q5uPoXvV-KQ5g</recordid><startdate>20180630</startdate><enddate>20180630</enddate><creator>Schomaker, Michael</creator><creator>Heumann, Christian</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8475-0591</orcidid></search><sort><creationdate>20180630</creationdate><title>Bootstrap inference when using multiple imputation</title><author>Schomaker, Michael ; Heumann, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4384-8092d6995a25928f58c4290162ae8c5e40a6f3c5d9076db0ea050269a1055c783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anti-Retroviral Agents</topic><topic>Biometry - methods</topic><topic>causal inference</topic><topic>Computer Simulation</topic><topic>g‐methods</topic><topic>HIV</topic><topic>HIV Infections - drug therapy</topic><topic>Humans</topic><topic>Missing data</topic><topic>Models, Statistical</topic><topic>Regression analysis</topic><topic>resampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schomaker, Michael</creatorcontrib><creatorcontrib>Heumann, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schomaker, Michael</au><au>Heumann, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bootstrap inference when using multiple imputation</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2018-06-30</date><risdate>2018</risdate><volume>37</volume><issue>14</issue><spage>2252</spage><epage>2266</epage><pages>2252-2266</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g‐formula for inference, a method for which no standard errors are available.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29682776</pmid><doi>10.1002/sim.7654</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8475-0591</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2018-06, Vol.37 (14), p.2252-2266
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5986623
source MEDLINE; Wiley Journals
subjects Anti-Retroviral Agents
Biometry - methods
causal inference
Computer Simulation
g‐methods
HIV
HIV Infections - drug therapy
Humans
Missing data
Models, Statistical
Regression analysis
resampling
title Bootstrap inference when using multiple imputation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bootstrap%20inference%20when%20using%20multiple%20imputation&rft.jtitle=Statistics%20in%20medicine&rft.au=Schomaker,%20Michael&rft.date=2018-06-30&rft.volume=37&rft.issue=14&rft.spage=2252&rft.epage=2266&rft.pages=2252-2266&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.7654&rft_dat=%3Cproquest_pubme%3E2049618577%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049618577&rft_id=info:pmid/29682776&rfr_iscdi=true