NetSig: network-based discovery from cancer genomes

NetSig is a network-based statistic that identifies cancer driver genes with high accuracy and can be combined with gene-based statistical tests; results are validated with a large-scale in vivo tumorigenesis assay. Methods that integrate molecular network information and tumor genome data could com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2018-01, Vol.15 (1), p.61-66
Hauptverfasser: Horn, Heiko, Lawrence, Michael S, Chouinard, Candace R, Shrestha, Yashaswi, Hu, Jessica Xin, Worstell, Elizabeth, Shea, Emily, Ilic, Nina, Kim, Eejung, Kamburov, Atanas, Kashani, Alireza, Hahn, William C, Campbell, Joshua D, Boehm, Jesse S, Getz, Gad, Lage, Kasper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 61
container_title Nature methods
container_volume 15
creator Horn, Heiko
Lawrence, Michael S
Chouinard, Candace R
Shrestha, Yashaswi
Hu, Jessica Xin
Worstell, Elizabeth
Shea, Emily
Ilic, Nina
Kim, Eejung
Kamburov, Atanas
Kashani, Alireza
Hahn, William C
Campbell, Joshua D
Boehm, Jesse S
Getz, Gad
Lage, Kasper
description NetSig is a network-based statistic that identifies cancer driver genes with high accuracy and can be combined with gene-based statistical tests; results are validated with a large-scale in vivo tumorigenesis assay. Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (NetSig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that NetSig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two ( AKT2 and TFDP2 ) are significantly amplified. Our study presents a scalable integrated computational and experimental workflow to expand discovery from cancer genomes.
doi_str_mv 10.1038/nmeth.4514
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5985961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639132090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-40abedeae7820434817dc8333e7dc5df8266502e9abc5b456ae101f77d944a113</originalsourceid><addsrcrecordid>eNptkEtLw0AUhQdRrFY3_gAJuFNS55nMuBCk-IKiC3U9TCY3bWqTqTNppf_e1D5UcHUu3I9zDgehE4J7BDN5WVfQjHpcEL6DDojgMk4JFrubGyvSQYchjDFmjFOxjzpUUYyJkgeIPUHzUg6vohqaT-ff48wEyKO8DNbNwS-iwrsqsqa24KMh1K6CcIT2CjMJcLzWLnq7u33tP8SD5_vH_s0gtpzTJubYZJCDgVRSzBmXJM2tZIxBqyIvJE0SgSkok1mRcZEYIJgUaZorzg0hrIuuV77TWVZBbqFuvJnoqS8r4xfamVL__dTlSA_dXAslhUqWBmdrA-8-ZhAaPXYzX7edNU2YIoxihVvqfEVZ70LwUGwTCNbLgfX3wHo5cAuf_u60RTeLtsDFCgjtqx6C_8n8x-4LNaSF-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639132090</pqid></control><display><type>article</type><title>NetSig: network-based discovery from cancer genomes</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Horn, Heiko ; Lawrence, Michael S ; Chouinard, Candace R ; Shrestha, Yashaswi ; Hu, Jessica Xin ; Worstell, Elizabeth ; Shea, Emily ; Ilic, Nina ; Kim, Eejung ; Kamburov, Atanas ; Kashani, Alireza ; Hahn, William C ; Campbell, Joshua D ; Boehm, Jesse S ; Getz, Gad ; Lage, Kasper</creator><creatorcontrib>Horn, Heiko ; Lawrence, Michael S ; Chouinard, Candace R ; Shrestha, Yashaswi ; Hu, Jessica Xin ; Worstell, Elizabeth ; Shea, Emily ; Ilic, Nina ; Kim, Eejung ; Kamburov, Atanas ; Kashani, Alireza ; Hahn, William C ; Campbell, Joshua D ; Boehm, Jesse S ; Getz, Gad ; Lage, Kasper</creatorcontrib><description>NetSig is a network-based statistic that identifies cancer driver genes with high accuracy and can be combined with gene-based statistical tests; results are validated with a large-scale in vivo tumorigenesis assay. Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (NetSig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that NetSig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two ( AKT2 and TFDP2 ) are significantly amplified. Our study presents a scalable integrated computational and experimental workflow to expand discovery from cancer genomes.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth.4514</identifier><identifier>PMID: 29200198</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>49/109 ; 631/114/2415 ; 631/1647/2217 ; 631/208/191 ; 631/67/68 ; 64/60 ; AKT2 protein ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical Engineering/Biotechnology ; Cancer ; Carcinogenesis - genetics ; Computational Biology - methods ; Computer applications ; Gene Expression Regulation, Neoplastic ; Gene Regulatory Networks ; Genes ; Genomes ; Humans ; In vivo methods and tests ; Information processing ; Life Sciences ; Lung cancer ; Mutation ; Neoplasm Proteins - genetics ; Neoplasms - genetics ; Proteomics ; Statistical analysis ; Statistical tests ; Tumorigenesis ; Tumors ; Workflow</subject><ispartof>Nature methods, 2018-01, Vol.15 (1), p.61-66</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-40abedeae7820434817dc8333e7dc5df8266502e9abc5b456ae101f77d944a113</citedby><cites>FETCH-LOGICAL-c442t-40abedeae7820434817dc8333e7dc5df8266502e9abc5b456ae101f77d944a113</cites><orcidid>0000-0001-6827-6239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmeth.4514$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmeth.4514$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29200198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horn, Heiko</creatorcontrib><creatorcontrib>Lawrence, Michael S</creatorcontrib><creatorcontrib>Chouinard, Candace R</creatorcontrib><creatorcontrib>Shrestha, Yashaswi</creatorcontrib><creatorcontrib>Hu, Jessica Xin</creatorcontrib><creatorcontrib>Worstell, Elizabeth</creatorcontrib><creatorcontrib>Shea, Emily</creatorcontrib><creatorcontrib>Ilic, Nina</creatorcontrib><creatorcontrib>Kim, Eejung</creatorcontrib><creatorcontrib>Kamburov, Atanas</creatorcontrib><creatorcontrib>Kashani, Alireza</creatorcontrib><creatorcontrib>Hahn, William C</creatorcontrib><creatorcontrib>Campbell, Joshua D</creatorcontrib><creatorcontrib>Boehm, Jesse S</creatorcontrib><creatorcontrib>Getz, Gad</creatorcontrib><creatorcontrib>Lage, Kasper</creatorcontrib><title>NetSig: network-based discovery from cancer genomes</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>NetSig is a network-based statistic that identifies cancer driver genes with high accuracy and can be combined with gene-based statistical tests; results are validated with a large-scale in vivo tumorigenesis assay. Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (NetSig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that NetSig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two ( AKT2 and TFDP2 ) are significantly amplified. Our study presents a scalable integrated computational and experimental workflow to expand discovery from cancer genomes.</description><subject>49/109</subject><subject>631/114/2415</subject><subject>631/1647/2217</subject><subject>631/208/191</subject><subject>631/67/68</subject><subject>64/60</subject><subject>AKT2 protein</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cancer</subject><subject>Carcinogenesis - genetics</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genomes</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Information processing</subject><subject>Life Sciences</subject><subject>Lung cancer</subject><subject>Mutation</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasms - genetics</subject><subject>Proteomics</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Workflow</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkEtLw0AUhQdRrFY3_gAJuFNS55nMuBCk-IKiC3U9TCY3bWqTqTNppf_e1D5UcHUu3I9zDgehE4J7BDN5WVfQjHpcEL6DDojgMk4JFrubGyvSQYchjDFmjFOxjzpUUYyJkgeIPUHzUg6vohqaT-ff48wEyKO8DNbNwS-iwrsqsqa24KMh1K6CcIT2CjMJcLzWLnq7u33tP8SD5_vH_s0gtpzTJubYZJCDgVRSzBmXJM2tZIxBqyIvJE0SgSkok1mRcZEYIJgUaZorzg0hrIuuV77TWVZBbqFuvJnoqS8r4xfamVL__dTlSA_dXAslhUqWBmdrA-8-ZhAaPXYzX7edNU2YIoxihVvqfEVZ70LwUGwTCNbLgfX3wHo5cAuf_u60RTeLtsDFCgjtqx6C_8n8x-4LNaSF-A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Horn, Heiko</creator><creator>Lawrence, Michael S</creator><creator>Chouinard, Candace R</creator><creator>Shrestha, Yashaswi</creator><creator>Hu, Jessica Xin</creator><creator>Worstell, Elizabeth</creator><creator>Shea, Emily</creator><creator>Ilic, Nina</creator><creator>Kim, Eejung</creator><creator>Kamburov, Atanas</creator><creator>Kashani, Alireza</creator><creator>Hahn, William C</creator><creator>Campbell, Joshua D</creator><creator>Boehm, Jesse S</creator><creator>Getz, Gad</creator><creator>Lage, Kasper</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6827-6239</orcidid></search><sort><creationdate>20180101</creationdate><title>NetSig: network-based discovery from cancer genomes</title><author>Horn, Heiko ; Lawrence, Michael S ; Chouinard, Candace R ; Shrestha, Yashaswi ; Hu, Jessica Xin ; Worstell, Elizabeth ; Shea, Emily ; Ilic, Nina ; Kim, Eejung ; Kamburov, Atanas ; Kashani, Alireza ; Hahn, William C ; Campbell, Joshua D ; Boehm, Jesse S ; Getz, Gad ; Lage, Kasper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-40abedeae7820434817dc8333e7dc5df8266502e9abc5b456ae101f77d944a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>49/109</topic><topic>631/114/2415</topic><topic>631/1647/2217</topic><topic>631/208/191</topic><topic>631/67/68</topic><topic>64/60</topic><topic>AKT2 protein</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cancer</topic><topic>Carcinogenesis - genetics</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genomes</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Information processing</topic><topic>Life Sciences</topic><topic>Lung cancer</topic><topic>Mutation</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasms - genetics</topic><topic>Proteomics</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horn, Heiko</creatorcontrib><creatorcontrib>Lawrence, Michael S</creatorcontrib><creatorcontrib>Chouinard, Candace R</creatorcontrib><creatorcontrib>Shrestha, Yashaswi</creatorcontrib><creatorcontrib>Hu, Jessica Xin</creatorcontrib><creatorcontrib>Worstell, Elizabeth</creatorcontrib><creatorcontrib>Shea, Emily</creatorcontrib><creatorcontrib>Ilic, Nina</creatorcontrib><creatorcontrib>Kim, Eejung</creatorcontrib><creatorcontrib>Kamburov, Atanas</creatorcontrib><creatorcontrib>Kashani, Alireza</creatorcontrib><creatorcontrib>Hahn, William C</creatorcontrib><creatorcontrib>Campbell, Joshua D</creatorcontrib><creatorcontrib>Boehm, Jesse S</creatorcontrib><creatorcontrib>Getz, Gad</creatorcontrib><creatorcontrib>Lage, Kasper</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horn, Heiko</au><au>Lawrence, Michael S</au><au>Chouinard, Candace R</au><au>Shrestha, Yashaswi</au><au>Hu, Jessica Xin</au><au>Worstell, Elizabeth</au><au>Shea, Emily</au><au>Ilic, Nina</au><au>Kim, Eejung</au><au>Kamburov, Atanas</au><au>Kashani, Alireza</au><au>Hahn, William C</au><au>Campbell, Joshua D</au><au>Boehm, Jesse S</au><au>Getz, Gad</au><au>Lage, Kasper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NetSig: network-based discovery from cancer genomes</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>15</volume><issue>1</issue><spage>61</spage><epage>66</epage><pages>61-66</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>NetSig is a network-based statistic that identifies cancer driver genes with high accuracy and can be combined with gene-based statistical tests; results are validated with a large-scale in vivo tumorigenesis assay. Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (NetSig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that NetSig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two ( AKT2 and TFDP2 ) are significantly amplified. Our study presents a scalable integrated computational and experimental workflow to expand discovery from cancer genomes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29200198</pmid><doi>10.1038/nmeth.4514</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6827-6239</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2018-01, Vol.15 (1), p.61-66
issn 1548-7091
1548-7105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5985961
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 49/109
631/114/2415
631/1647/2217
631/208/191
631/67/68
64/60
AKT2 protein
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical Engineering/Biotechnology
Cancer
Carcinogenesis - genetics
Computational Biology - methods
Computer applications
Gene Expression Regulation, Neoplastic
Gene Regulatory Networks
Genes
Genomes
Humans
In vivo methods and tests
Information processing
Life Sciences
Lung cancer
Mutation
Neoplasm Proteins - genetics
Neoplasms - genetics
Proteomics
Statistical analysis
Statistical tests
Tumorigenesis
Tumors
Workflow
title NetSig: network-based discovery from cancer genomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NetSig:%20network-based%20discovery%20from%20cancer%20genomes&rft.jtitle=Nature%20methods&rft.au=Horn,%20Heiko&rft.date=2018-01-01&rft.volume=15&rft.issue=1&rft.spage=61&rft.epage=66&rft.pages=61-66&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth.4514&rft_dat=%3Cproquest_pubme%3E2639132090%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639132090&rft_id=info:pmid/29200198&rfr_iscdi=true