NetSig: network-based discovery from cancer genomes
NetSig is a network-based statistic that identifies cancer driver genes with high accuracy and can be combined with gene-based statistical tests; results are validated with a large-scale in vivo tumorigenesis assay. Methods that integrate molecular network information and tumor genome data could com...
Gespeichert in:
Veröffentlicht in: | Nature methods 2018-01, Vol.15 (1), p.61-66 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | Nature methods |
container_volume | 15 |
creator | Horn, Heiko Lawrence, Michael S Chouinard, Candace R Shrestha, Yashaswi Hu, Jessica Xin Worstell, Elizabeth Shea, Emily Ilic, Nina Kim, Eejung Kamburov, Atanas Kashani, Alireza Hahn, William C Campbell, Joshua D Boehm, Jesse S Getz, Gad Lage, Kasper |
description | NetSig is a network-based statistic that identifies cancer driver genes with high accuracy and can be combined with gene-based statistical tests; results are validated with a large-scale
in vivo
tumorigenesis assay.
Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (NetSig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine
in vivo
tumorigenic potential in mice, we found that NetSig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (
AKT2
and
TFDP2
) are significantly amplified. Our study presents a scalable integrated computational and experimental workflow to expand discovery from cancer genomes. |
doi_str_mv | 10.1038/nmeth.4514 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5985961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639132090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-40abedeae7820434817dc8333e7dc5df8266502e9abc5b456ae101f77d944a113</originalsourceid><addsrcrecordid>eNptkEtLw0AUhQdRrFY3_gAJuFNS55nMuBCk-IKiC3U9TCY3bWqTqTNppf_e1D5UcHUu3I9zDgehE4J7BDN5WVfQjHpcEL6DDojgMk4JFrubGyvSQYchjDFmjFOxjzpUUYyJkgeIPUHzUg6vohqaT-ff48wEyKO8DNbNwS-iwrsqsqa24KMh1K6CcIT2CjMJcLzWLnq7u33tP8SD5_vH_s0gtpzTJubYZJCDgVRSzBmXJM2tZIxBqyIvJE0SgSkok1mRcZEYIJgUaZorzg0hrIuuV77TWVZBbqFuvJnoqS8r4xfamVL__dTlSA_dXAslhUqWBmdrA-8-ZhAaPXYzX7edNU2YIoxihVvqfEVZ70LwUGwTCNbLgfX3wHo5cAuf_u60RTeLtsDFCgjtqx6C_8n8x-4LNaSF-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639132090</pqid></control><display><type>article</type><title>NetSig: network-based discovery from cancer genomes</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Horn, Heiko ; Lawrence, Michael S ; Chouinard, Candace R ; Shrestha, Yashaswi ; Hu, Jessica Xin ; Worstell, Elizabeth ; Shea, Emily ; Ilic, Nina ; Kim, Eejung ; Kamburov, Atanas ; Kashani, Alireza ; Hahn, William C ; Campbell, Joshua D ; Boehm, Jesse S ; Getz, Gad ; Lage, Kasper</creator><creatorcontrib>Horn, Heiko ; Lawrence, Michael S ; Chouinard, Candace R ; Shrestha, Yashaswi ; Hu, Jessica Xin ; Worstell, Elizabeth ; Shea, Emily ; Ilic, Nina ; Kim, Eejung ; Kamburov, Atanas ; Kashani, Alireza ; Hahn, William C ; Campbell, Joshua D ; Boehm, Jesse S ; Getz, Gad ; Lage, Kasper</creatorcontrib><description>NetSig is a network-based statistic that identifies cancer driver genes with high accuracy and can be combined with gene-based statistical tests; results are validated with a large-scale
in vivo
tumorigenesis assay.
Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (NetSig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine
in vivo
tumorigenic potential in mice, we found that NetSig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (
AKT2
and
TFDP2
) are significantly amplified. Our study presents a scalable integrated computational and experimental workflow to expand discovery from cancer genomes.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth.4514</identifier><identifier>PMID: 29200198</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>49/109 ; 631/114/2415 ; 631/1647/2217 ; 631/208/191 ; 631/67/68 ; 64/60 ; AKT2 protein ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical Engineering/Biotechnology ; Cancer ; Carcinogenesis - genetics ; Computational Biology - methods ; Computer applications ; Gene Expression Regulation, Neoplastic ; Gene Regulatory Networks ; Genes ; Genomes ; Humans ; In vivo methods and tests ; Information processing ; Life Sciences ; Lung cancer ; Mutation ; Neoplasm Proteins - genetics ; Neoplasms - genetics ; Proteomics ; Statistical analysis ; Statistical tests ; Tumorigenesis ; Tumors ; Workflow</subject><ispartof>Nature methods, 2018-01, Vol.15 (1), p.61-66</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-40abedeae7820434817dc8333e7dc5df8266502e9abc5b456ae101f77d944a113</citedby><cites>FETCH-LOGICAL-c442t-40abedeae7820434817dc8333e7dc5df8266502e9abc5b456ae101f77d944a113</cites><orcidid>0000-0001-6827-6239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmeth.4514$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmeth.4514$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,778,782,883,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29200198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horn, Heiko</creatorcontrib><creatorcontrib>Lawrence, Michael S</creatorcontrib><creatorcontrib>Chouinard, Candace R</creatorcontrib><creatorcontrib>Shrestha, Yashaswi</creatorcontrib><creatorcontrib>Hu, Jessica Xin</creatorcontrib><creatorcontrib>Worstell, Elizabeth</creatorcontrib><creatorcontrib>Shea, Emily</creatorcontrib><creatorcontrib>Ilic, Nina</creatorcontrib><creatorcontrib>Kim, Eejung</creatorcontrib><creatorcontrib>Kamburov, Atanas</creatorcontrib><creatorcontrib>Kashani, Alireza</creatorcontrib><creatorcontrib>Hahn, William C</creatorcontrib><creatorcontrib>Campbell, Joshua D</creatorcontrib><creatorcontrib>Boehm, Jesse S</creatorcontrib><creatorcontrib>Getz, Gad</creatorcontrib><creatorcontrib>Lage, Kasper</creatorcontrib><title>NetSig: network-based discovery from cancer genomes</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>NetSig is a network-based statistic that identifies cancer driver genes with high accuracy and can be combined with gene-based statistical tests; results are validated with a large-scale
in vivo
tumorigenesis assay.
Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (NetSig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine
in vivo
tumorigenic potential in mice, we found that NetSig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (
AKT2
and
TFDP2
) are significantly amplified. Our study presents a scalable integrated computational and experimental workflow to expand discovery from cancer genomes.</description><subject>49/109</subject><subject>631/114/2415</subject><subject>631/1647/2217</subject><subject>631/208/191</subject><subject>631/67/68</subject><subject>64/60</subject><subject>AKT2 protein</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cancer</subject><subject>Carcinogenesis - genetics</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genomes</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Information processing</subject><subject>Life Sciences</subject><subject>Lung cancer</subject><subject>Mutation</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasms - genetics</subject><subject>Proteomics</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Workflow</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkEtLw0AUhQdRrFY3_gAJuFNS55nMuBCk-IKiC3U9TCY3bWqTqTNppf_e1D5UcHUu3I9zDgehE4J7BDN5WVfQjHpcEL6DDojgMk4JFrubGyvSQYchjDFmjFOxjzpUUYyJkgeIPUHzUg6vohqaT-ff48wEyKO8DNbNwS-iwrsqsqa24KMh1K6CcIT2CjMJcLzWLnq7u33tP8SD5_vH_s0gtpzTJubYZJCDgVRSzBmXJM2tZIxBqyIvJE0SgSkok1mRcZEYIJgUaZorzg0hrIuuV77TWVZBbqFuvJnoqS8r4xfamVL__dTlSA_dXAslhUqWBmdrA-8-ZhAaPXYzX7edNU2YIoxihVvqfEVZ70LwUGwTCNbLgfX3wHo5cAuf_u60RTeLtsDFCgjtqx6C_8n8x-4LNaSF-A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Horn, Heiko</creator><creator>Lawrence, Michael S</creator><creator>Chouinard, Candace R</creator><creator>Shrestha, Yashaswi</creator><creator>Hu, Jessica Xin</creator><creator>Worstell, Elizabeth</creator><creator>Shea, Emily</creator><creator>Ilic, Nina</creator><creator>Kim, Eejung</creator><creator>Kamburov, Atanas</creator><creator>Kashani, Alireza</creator><creator>Hahn, William C</creator><creator>Campbell, Joshua D</creator><creator>Boehm, Jesse S</creator><creator>Getz, Gad</creator><creator>Lage, Kasper</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6827-6239</orcidid></search><sort><creationdate>20180101</creationdate><title>NetSig: network-based discovery from cancer genomes</title><author>Horn, Heiko ; Lawrence, Michael S ; Chouinard, Candace R ; Shrestha, Yashaswi ; Hu, Jessica Xin ; Worstell, Elizabeth ; Shea, Emily ; Ilic, Nina ; Kim, Eejung ; Kamburov, Atanas ; Kashani, Alireza ; Hahn, William C ; Campbell, Joshua D ; Boehm, Jesse S ; Getz, Gad ; Lage, Kasper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-40abedeae7820434817dc8333e7dc5df8266502e9abc5b456ae101f77d944a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>49/109</topic><topic>631/114/2415</topic><topic>631/1647/2217</topic><topic>631/208/191</topic><topic>631/67/68</topic><topic>64/60</topic><topic>AKT2 protein</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cancer</topic><topic>Carcinogenesis - genetics</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genomes</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Information processing</topic><topic>Life Sciences</topic><topic>Lung cancer</topic><topic>Mutation</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasms - genetics</topic><topic>Proteomics</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horn, Heiko</creatorcontrib><creatorcontrib>Lawrence, Michael S</creatorcontrib><creatorcontrib>Chouinard, Candace R</creatorcontrib><creatorcontrib>Shrestha, Yashaswi</creatorcontrib><creatorcontrib>Hu, Jessica Xin</creatorcontrib><creatorcontrib>Worstell, Elizabeth</creatorcontrib><creatorcontrib>Shea, Emily</creatorcontrib><creatorcontrib>Ilic, Nina</creatorcontrib><creatorcontrib>Kim, Eejung</creatorcontrib><creatorcontrib>Kamburov, Atanas</creatorcontrib><creatorcontrib>Kashani, Alireza</creatorcontrib><creatorcontrib>Hahn, William C</creatorcontrib><creatorcontrib>Campbell, Joshua D</creatorcontrib><creatorcontrib>Boehm, Jesse S</creatorcontrib><creatorcontrib>Getz, Gad</creatorcontrib><creatorcontrib>Lage, Kasper</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horn, Heiko</au><au>Lawrence, Michael S</au><au>Chouinard, Candace R</au><au>Shrestha, Yashaswi</au><au>Hu, Jessica Xin</au><au>Worstell, Elizabeth</au><au>Shea, Emily</au><au>Ilic, Nina</au><au>Kim, Eejung</au><au>Kamburov, Atanas</au><au>Kashani, Alireza</au><au>Hahn, William C</au><au>Campbell, Joshua D</au><au>Boehm, Jesse S</au><au>Getz, Gad</au><au>Lage, Kasper</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NetSig: network-based discovery from cancer genomes</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>15</volume><issue>1</issue><spage>61</spage><epage>66</epage><pages>61-66</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>NetSig is a network-based statistic that identifies cancer driver genes with high accuracy and can be combined with gene-based statistical tests; results are validated with a large-scale
in vivo
tumorigenesis assay.
Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (NetSig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine
in vivo
tumorigenic potential in mice, we found that NetSig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (
AKT2
and
TFDP2
) are significantly amplified. Our study presents a scalable integrated computational and experimental workflow to expand discovery from cancer genomes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29200198</pmid><doi>10.1038/nmeth.4514</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6827-6239</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2018-01, Vol.15 (1), p.61-66 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5985961 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 49/109 631/114/2415 631/1647/2217 631/208/191 631/67/68 64/60 AKT2 protein Bioinformatics Biological Microscopy Biological Techniques Biomedical Engineering/Biotechnology Cancer Carcinogenesis - genetics Computational Biology - methods Computer applications Gene Expression Regulation, Neoplastic Gene Regulatory Networks Genes Genomes Humans In vivo methods and tests Information processing Life Sciences Lung cancer Mutation Neoplasm Proteins - genetics Neoplasms - genetics Proteomics Statistical analysis Statistical tests Tumorigenesis Tumors Workflow |
title | NetSig: network-based discovery from cancer genomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NetSig:%20network-based%20discovery%20from%20cancer%20genomes&rft.jtitle=Nature%20methods&rft.au=Horn,%20Heiko&rft.date=2018-01-01&rft.volume=15&rft.issue=1&rft.spage=61&rft.epage=66&rft.pages=61-66&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth.4514&rft_dat=%3Cproquest_pubme%3E2639132090%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639132090&rft_id=info:pmid/29200198&rfr_iscdi=true |