Identification of Misclassified ClinVar Variants via Disease Population Prevalence

There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2018-04, Vol.102 (4), p.609-619
Hauptverfasser: Shah, Naisha, Hou, Ying-Chen Claire, Yu, Hung-Chun, Sainger, Rachana, Caskey, C. Thomas, Venter, J. Craig, Telenti, Amalio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 619
container_issue 4
container_start_page 609
container_title American journal of human genetics
container_volume 102
creator Shah, Naisha
Hou, Ying-Chen Claire
Yu, Hung-Chun
Sainger, Rachana
Caskey, C. Thomas
Venter, J. Craig
Telenti, Amalio
description There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-recommended 59 gene-condition sets for incidental findings and 463 genes associated with 265 OrphaNet conditions. A total of 25,505 variants were used to identify patterns of inflation (i.e., excess genetic risk and misclassification). Inflation increases as the level of evidence supporting the pathogenic nature of the variant decreases. We observed up to 11.5% of genetic disorders with inflation in pathogenic variant sets and up to 92.3% for the variant set with conflicting interpretations. This improved to 7.7% and 57.7%, respectively, after filtering for disease-specific allele frequency. The patterns of inflation were replicated using public data from more than 138,000 genomes. The burden of rare variants was a main contributing factor of the observed inflation, indicating collective misclassified rare variants. We also analyzed the dynamics of re-classification of variant pathogenicity in ClinVar over time, which indicates progressive improvement in variant classification. The study shows that databases include a significant proportion of wrongly ascertained variants; however, it underscores the critical role of ClinVar to contrast claims and foster validation across submitters.
doi_str_mv 10.1016/j.ajhg.2018.02.019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5985337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929718300879</els_id><sourcerecordid>2022982354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-2a243776f228daf7d5c52cb5f9b7218b72c0cdc246cca53349ea4ffecc8a61133</originalsourceid><addsrcrecordid>eNp9UU1vEzEQtRAVTQt_gAPaI5ddxuP1fkgICQUolVq1qoCrNfGOW0ebdbA3kfj3OEqp4MLBY2nmvWfPe0K8llBJkM27dUXrh_sKQXYVYAWyfyYWUqu2bBrQz8UCALDssW9PxVlKawApO1AvxCn2DWpAtRB3lwNPs3fe0uzDVARXXPtkR0opN3kolqOfflAs8vE0zanYeyo--cSUuLgN2914JN5G3tPIk-WX4sTRmPjV430uvn_5_G35tby6ubhcfrwqrUY5l0hYq7ZtHGI3kGsHnft2pV2_alF2uViwg8W6sZa0UnXPVDvH1nbUSKnUufhw1N3uVhsebN4j0mi20W8o_jKBvPl3MvkHcx_2Rvdd1muzwNtHgRh-7jjNZpNX53GkicMuGQTEvkOl6wzFI9TGkFJk9_SMBHMIw6zNIQxzCMMAmhxGJr35-4NPlD_uZ8D7I4CzTXvP0STrDxYOPrKdzRD8__R_A2WsnTo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022982354</pqid></control><display><type>article</type><title>Identification of Misclassified ClinVar Variants via Disease Population Prevalence</title><source>MEDLINE</source><source>Cell Press Archives (Open access)</source><source>Elsevier ScienceDirect Journals Complete</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Shah, Naisha ; Hou, Ying-Chen Claire ; Yu, Hung-Chun ; Sainger, Rachana ; Caskey, C. Thomas ; Venter, J. Craig ; Telenti, Amalio</creator><creatorcontrib>Shah, Naisha ; Hou, Ying-Chen Claire ; Yu, Hung-Chun ; Sainger, Rachana ; Caskey, C. Thomas ; Venter, J. Craig ; Telenti, Amalio</creatorcontrib><description>There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-recommended 59 gene-condition sets for incidental findings and 463 genes associated with 265 OrphaNet conditions. A total of 25,505 variants were used to identify patterns of inflation (i.e., excess genetic risk and misclassification). Inflation increases as the level of evidence supporting the pathogenic nature of the variant decreases. We observed up to 11.5% of genetic disorders with inflation in pathogenic variant sets and up to 92.3% for the variant set with conflicting interpretations. This improved to 7.7% and 57.7%, respectively, after filtering for disease-specific allele frequency. The patterns of inflation were replicated using public data from more than 138,000 genomes. The burden of rare variants was a main contributing factor of the observed inflation, indicating collective misclassified rare variants. We also analyzed the dynamics of re-classification of variant pathogenicity in ClinVar over time, which indicates progressive improvement in variant classification. The study shows that databases include a significant proportion of wrongly ascertained variants; however, it underscores the critical role of ClinVar to contrast claims and foster validation across submitters.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2018.02.019</identifier><identifier>PMID: 29625023</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ACMG ; ClinVar ; Disease - genetics ; Genetic Predisposition to Disease ; Genetic Variation ; Humans ; OrphaNet ; pathogenic variant ; penetrance ; Prevalence ; Reproducibility of Results ; Risk Factors ; Software ; Time Factors</subject><ispartof>American journal of human genetics, 2018-04, Vol.102 (4), p.609-619</ispartof><rights>2018 American Society of Human Genetics</rights><rights>Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 American Society of Human Genetics. 2018 American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-2a243776f228daf7d5c52cb5f9b7218b72c0cdc246cca53349ea4ffecc8a61133</citedby><cites>FETCH-LOGICAL-c521t-2a243776f228daf7d5c52cb5f9b7218b72c0cdc246cca53349ea4ffecc8a61133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985337/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002929718300879$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29625023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Naisha</creatorcontrib><creatorcontrib>Hou, Ying-Chen Claire</creatorcontrib><creatorcontrib>Yu, Hung-Chun</creatorcontrib><creatorcontrib>Sainger, Rachana</creatorcontrib><creatorcontrib>Caskey, C. Thomas</creatorcontrib><creatorcontrib>Venter, J. Craig</creatorcontrib><creatorcontrib>Telenti, Amalio</creatorcontrib><title>Identification of Misclassified ClinVar Variants via Disease Population Prevalence</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-recommended 59 gene-condition sets for incidental findings and 463 genes associated with 265 OrphaNet conditions. A total of 25,505 variants were used to identify patterns of inflation (i.e., excess genetic risk and misclassification). Inflation increases as the level of evidence supporting the pathogenic nature of the variant decreases. We observed up to 11.5% of genetic disorders with inflation in pathogenic variant sets and up to 92.3% for the variant set with conflicting interpretations. This improved to 7.7% and 57.7%, respectively, after filtering for disease-specific allele frequency. The patterns of inflation were replicated using public data from more than 138,000 genomes. The burden of rare variants was a main contributing factor of the observed inflation, indicating collective misclassified rare variants. We also analyzed the dynamics of re-classification of variant pathogenicity in ClinVar over time, which indicates progressive improvement in variant classification. The study shows that databases include a significant proportion of wrongly ascertained variants; however, it underscores the critical role of ClinVar to contrast claims and foster validation across submitters.</description><subject>ACMG</subject><subject>ClinVar</subject><subject>Disease - genetics</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic Variation</subject><subject>Humans</subject><subject>OrphaNet</subject><subject>pathogenic variant</subject><subject>penetrance</subject><subject>Prevalence</subject><subject>Reproducibility of Results</subject><subject>Risk Factors</subject><subject>Software</subject><subject>Time Factors</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1vEzEQtRAVTQt_gAPaI5ddxuP1fkgICQUolVq1qoCrNfGOW0ebdbA3kfj3OEqp4MLBY2nmvWfPe0K8llBJkM27dUXrh_sKQXYVYAWyfyYWUqu2bBrQz8UCALDssW9PxVlKawApO1AvxCn2DWpAtRB3lwNPs3fe0uzDVARXXPtkR0opN3kolqOfflAs8vE0zanYeyo--cSUuLgN2914JN5G3tPIk-WX4sTRmPjV430uvn_5_G35tby6ubhcfrwqrUY5l0hYq7ZtHGI3kGsHnft2pV2_alF2uViwg8W6sZa0UnXPVDvH1nbUSKnUufhw1N3uVhsebN4j0mi20W8o_jKBvPl3MvkHcx_2Rvdd1muzwNtHgRh-7jjNZpNX53GkicMuGQTEvkOl6wzFI9TGkFJk9_SMBHMIw6zNIQxzCMMAmhxGJr35-4NPlD_uZ8D7I4CzTXvP0STrDxYOPrKdzRD8__R_A2WsnTo</recordid><startdate>20180405</startdate><enddate>20180405</enddate><creator>Shah, Naisha</creator><creator>Hou, Ying-Chen Claire</creator><creator>Yu, Hung-Chun</creator><creator>Sainger, Rachana</creator><creator>Caskey, C. Thomas</creator><creator>Venter, J. Craig</creator><creator>Telenti, Amalio</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180405</creationdate><title>Identification of Misclassified ClinVar Variants via Disease Population Prevalence</title><author>Shah, Naisha ; Hou, Ying-Chen Claire ; Yu, Hung-Chun ; Sainger, Rachana ; Caskey, C. Thomas ; Venter, J. Craig ; Telenti, Amalio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-2a243776f228daf7d5c52cb5f9b7218b72c0cdc246cca53349ea4ffecc8a61133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ACMG</topic><topic>ClinVar</topic><topic>Disease - genetics</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic Variation</topic><topic>Humans</topic><topic>OrphaNet</topic><topic>pathogenic variant</topic><topic>penetrance</topic><topic>Prevalence</topic><topic>Reproducibility of Results</topic><topic>Risk Factors</topic><topic>Software</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Naisha</creatorcontrib><creatorcontrib>Hou, Ying-Chen Claire</creatorcontrib><creatorcontrib>Yu, Hung-Chun</creatorcontrib><creatorcontrib>Sainger, Rachana</creatorcontrib><creatorcontrib>Caskey, C. Thomas</creatorcontrib><creatorcontrib>Venter, J. Craig</creatorcontrib><creatorcontrib>Telenti, Amalio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Naisha</au><au>Hou, Ying-Chen Claire</au><au>Yu, Hung-Chun</au><au>Sainger, Rachana</au><au>Caskey, C. Thomas</au><au>Venter, J. Craig</au><au>Telenti, Amalio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Misclassified ClinVar Variants via Disease Population Prevalence</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2018-04-05</date><risdate>2018</risdate><volume>102</volume><issue>4</issue><spage>609</spage><epage>619</epage><pages>609-619</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-recommended 59 gene-condition sets for incidental findings and 463 genes associated with 265 OrphaNet conditions. A total of 25,505 variants were used to identify patterns of inflation (i.e., excess genetic risk and misclassification). Inflation increases as the level of evidence supporting the pathogenic nature of the variant decreases. We observed up to 11.5% of genetic disorders with inflation in pathogenic variant sets and up to 92.3% for the variant set with conflicting interpretations. This improved to 7.7% and 57.7%, respectively, after filtering for disease-specific allele frequency. The patterns of inflation were replicated using public data from more than 138,000 genomes. The burden of rare variants was a main contributing factor of the observed inflation, indicating collective misclassified rare variants. We also analyzed the dynamics of re-classification of variant pathogenicity in ClinVar over time, which indicates progressive improvement in variant classification. The study shows that databases include a significant proportion of wrongly ascertained variants; however, it underscores the critical role of ClinVar to contrast claims and foster validation across submitters.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29625023</pmid><doi>10.1016/j.ajhg.2018.02.019</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2018-04, Vol.102 (4), p.609-619
issn 0002-9297
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5985337
source MEDLINE; Cell Press Archives (Open access); Elsevier ScienceDirect Journals Complete; PubMed Central; EZB Electronic Journals Library
subjects ACMG
ClinVar
Disease - genetics
Genetic Predisposition to Disease
Genetic Variation
Humans
OrphaNet
pathogenic variant
penetrance
Prevalence
Reproducibility of Results
Risk Factors
Software
Time Factors
title Identification of Misclassified ClinVar Variants via Disease Population Prevalence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Misclassified%20ClinVar%20Variants%20via%20Disease%20Population%20Prevalence&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Shah,%20Naisha&rft.date=2018-04-05&rft.volume=102&rft.issue=4&rft.spage=609&rft.epage=619&rft.pages=609-619&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2018.02.019&rft_dat=%3Cproquest_pubme%3E2022982354%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022982354&rft_id=info:pmid/29625023&rft_els_id=S0002929718300879&rfr_iscdi=true