Identification of Misclassified ClinVar Variants via Disease Population Prevalence
There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-...
Gespeichert in:
Veröffentlicht in: | American journal of human genetics 2018-04, Vol.102 (4), p.609-619 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 619 |
---|---|
container_issue | 4 |
container_start_page | 609 |
container_title | American journal of human genetics |
container_volume | 102 |
creator | Shah, Naisha Hou, Ying-Chen Claire Yu, Hung-Chun Sainger, Rachana Caskey, C. Thomas Venter, J. Craig Telenti, Amalio |
description | There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-recommended 59 gene-condition sets for incidental findings and 463 genes associated with 265 OrphaNet conditions. A total of 25,505 variants were used to identify patterns of inflation (i.e., excess genetic risk and misclassification). Inflation increases as the level of evidence supporting the pathogenic nature of the variant decreases. We observed up to 11.5% of genetic disorders with inflation in pathogenic variant sets and up to 92.3% for the variant set with conflicting interpretations. This improved to 7.7% and 57.7%, respectively, after filtering for disease-specific allele frequency. The patterns of inflation were replicated using public data from more than 138,000 genomes. The burden of rare variants was a main contributing factor of the observed inflation, indicating collective misclassified rare variants. We also analyzed the dynamics of re-classification of variant pathogenicity in ClinVar over time, which indicates progressive improvement in variant classification. The study shows that databases include a significant proportion of wrongly ascertained variants; however, it underscores the critical role of ClinVar to contrast claims and foster validation across submitters. |
doi_str_mv | 10.1016/j.ajhg.2018.02.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5985337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929718300879</els_id><sourcerecordid>2022982354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-2a243776f228daf7d5c52cb5f9b7218b72c0cdc246cca53349ea4ffecc8a61133</originalsourceid><addsrcrecordid>eNp9UU1vEzEQtRAVTQt_gAPaI5ddxuP1fkgICQUolVq1qoCrNfGOW0ebdbA3kfj3OEqp4MLBY2nmvWfPe0K8llBJkM27dUXrh_sKQXYVYAWyfyYWUqu2bBrQz8UCALDssW9PxVlKawApO1AvxCn2DWpAtRB3lwNPs3fe0uzDVARXXPtkR0opN3kolqOfflAs8vE0zanYeyo--cSUuLgN2914JN5G3tPIk-WX4sTRmPjV430uvn_5_G35tby6ubhcfrwqrUY5l0hYq7ZtHGI3kGsHnft2pV2_alF2uViwg8W6sZa0UnXPVDvH1nbUSKnUufhw1N3uVhsebN4j0mi20W8o_jKBvPl3MvkHcx_2Rvdd1muzwNtHgRh-7jjNZpNX53GkicMuGQTEvkOl6wzFI9TGkFJk9_SMBHMIw6zNIQxzCMMAmhxGJr35-4NPlD_uZ8D7I4CzTXvP0STrDxYOPrKdzRD8__R_A2WsnTo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022982354</pqid></control><display><type>article</type><title>Identification of Misclassified ClinVar Variants via Disease Population Prevalence</title><source>MEDLINE</source><source>Cell Press Archives (Open access)</source><source>Elsevier ScienceDirect Journals Complete</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Shah, Naisha ; Hou, Ying-Chen Claire ; Yu, Hung-Chun ; Sainger, Rachana ; Caskey, C. Thomas ; Venter, J. Craig ; Telenti, Amalio</creator><creatorcontrib>Shah, Naisha ; Hou, Ying-Chen Claire ; Yu, Hung-Chun ; Sainger, Rachana ; Caskey, C. Thomas ; Venter, J. Craig ; Telenti, Amalio</creatorcontrib><description>There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-recommended 59 gene-condition sets for incidental findings and 463 genes associated with 265 OrphaNet conditions. A total of 25,505 variants were used to identify patterns of inflation (i.e., excess genetic risk and misclassification). Inflation increases as the level of evidence supporting the pathogenic nature of the variant decreases. We observed up to 11.5% of genetic disorders with inflation in pathogenic variant sets and up to 92.3% for the variant set with conflicting interpretations. This improved to 7.7% and 57.7%, respectively, after filtering for disease-specific allele frequency. The patterns of inflation were replicated using public data from more than 138,000 genomes. The burden of rare variants was a main contributing factor of the observed inflation, indicating collective misclassified rare variants. We also analyzed the dynamics of re-classification of variant pathogenicity in ClinVar over time, which indicates progressive improvement in variant classification. The study shows that databases include a significant proportion of wrongly ascertained variants; however, it underscores the critical role of ClinVar to contrast claims and foster validation across submitters.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2018.02.019</identifier><identifier>PMID: 29625023</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ACMG ; ClinVar ; Disease - genetics ; Genetic Predisposition to Disease ; Genetic Variation ; Humans ; OrphaNet ; pathogenic variant ; penetrance ; Prevalence ; Reproducibility of Results ; Risk Factors ; Software ; Time Factors</subject><ispartof>American journal of human genetics, 2018-04, Vol.102 (4), p.609-619</ispartof><rights>2018 American Society of Human Genetics</rights><rights>Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 American Society of Human Genetics. 2018 American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-2a243776f228daf7d5c52cb5f9b7218b72c0cdc246cca53349ea4ffecc8a61133</citedby><cites>FETCH-LOGICAL-c521t-2a243776f228daf7d5c52cb5f9b7218b72c0cdc246cca53349ea4ffecc8a61133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985337/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002929718300879$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29625023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Naisha</creatorcontrib><creatorcontrib>Hou, Ying-Chen Claire</creatorcontrib><creatorcontrib>Yu, Hung-Chun</creatorcontrib><creatorcontrib>Sainger, Rachana</creatorcontrib><creatorcontrib>Caskey, C. Thomas</creatorcontrib><creatorcontrib>Venter, J. Craig</creatorcontrib><creatorcontrib>Telenti, Amalio</creatorcontrib><title>Identification of Misclassified ClinVar Variants via Disease Population Prevalence</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-recommended 59 gene-condition sets for incidental findings and 463 genes associated with 265 OrphaNet conditions. A total of 25,505 variants were used to identify patterns of inflation (i.e., excess genetic risk and misclassification). Inflation increases as the level of evidence supporting the pathogenic nature of the variant decreases. We observed up to 11.5% of genetic disorders with inflation in pathogenic variant sets and up to 92.3% for the variant set with conflicting interpretations. This improved to 7.7% and 57.7%, respectively, after filtering for disease-specific allele frequency. The patterns of inflation were replicated using public data from more than 138,000 genomes. The burden of rare variants was a main contributing factor of the observed inflation, indicating collective misclassified rare variants. We also analyzed the dynamics of re-classification of variant pathogenicity in ClinVar over time, which indicates progressive improvement in variant classification. The study shows that databases include a significant proportion of wrongly ascertained variants; however, it underscores the critical role of ClinVar to contrast claims and foster validation across submitters.</description><subject>ACMG</subject><subject>ClinVar</subject><subject>Disease - genetics</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic Variation</subject><subject>Humans</subject><subject>OrphaNet</subject><subject>pathogenic variant</subject><subject>penetrance</subject><subject>Prevalence</subject><subject>Reproducibility of Results</subject><subject>Risk Factors</subject><subject>Software</subject><subject>Time Factors</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1vEzEQtRAVTQt_gAPaI5ddxuP1fkgICQUolVq1qoCrNfGOW0ebdbA3kfj3OEqp4MLBY2nmvWfPe0K8llBJkM27dUXrh_sKQXYVYAWyfyYWUqu2bBrQz8UCALDssW9PxVlKawApO1AvxCn2DWpAtRB3lwNPs3fe0uzDVARXXPtkR0opN3kolqOfflAs8vE0zanYeyo--cSUuLgN2914JN5G3tPIk-WX4sTRmPjV430uvn_5_G35tby6ubhcfrwqrUY5l0hYq7ZtHGI3kGsHnft2pV2_alF2uViwg8W6sZa0UnXPVDvH1nbUSKnUufhw1N3uVhsebN4j0mi20W8o_jKBvPl3MvkHcx_2Rvdd1muzwNtHgRh-7jjNZpNX53GkicMuGQTEvkOl6wzFI9TGkFJk9_SMBHMIw6zNIQxzCMMAmhxGJr35-4NPlD_uZ8D7I4CzTXvP0STrDxYOPrKdzRD8__R_A2WsnTo</recordid><startdate>20180405</startdate><enddate>20180405</enddate><creator>Shah, Naisha</creator><creator>Hou, Ying-Chen Claire</creator><creator>Yu, Hung-Chun</creator><creator>Sainger, Rachana</creator><creator>Caskey, C. Thomas</creator><creator>Venter, J. Craig</creator><creator>Telenti, Amalio</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180405</creationdate><title>Identification of Misclassified ClinVar Variants via Disease Population Prevalence</title><author>Shah, Naisha ; Hou, Ying-Chen Claire ; Yu, Hung-Chun ; Sainger, Rachana ; Caskey, C. Thomas ; Venter, J. Craig ; Telenti, Amalio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-2a243776f228daf7d5c52cb5f9b7218b72c0cdc246cca53349ea4ffecc8a61133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ACMG</topic><topic>ClinVar</topic><topic>Disease - genetics</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic Variation</topic><topic>Humans</topic><topic>OrphaNet</topic><topic>pathogenic variant</topic><topic>penetrance</topic><topic>Prevalence</topic><topic>Reproducibility of Results</topic><topic>Risk Factors</topic><topic>Software</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Naisha</creatorcontrib><creatorcontrib>Hou, Ying-Chen Claire</creatorcontrib><creatorcontrib>Yu, Hung-Chun</creatorcontrib><creatorcontrib>Sainger, Rachana</creatorcontrib><creatorcontrib>Caskey, C. Thomas</creatorcontrib><creatorcontrib>Venter, J. Craig</creatorcontrib><creatorcontrib>Telenti, Amalio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Naisha</au><au>Hou, Ying-Chen Claire</au><au>Yu, Hung-Chun</au><au>Sainger, Rachana</au><au>Caskey, C. Thomas</au><au>Venter, J. Craig</au><au>Telenti, Amalio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Misclassified ClinVar Variants via Disease Population Prevalence</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2018-04-05</date><risdate>2018</risdate><volume>102</volume><issue>4</issue><spage>609</spage><epage>619</epage><pages>609-619</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>There is a significant interest in the standardized classification of human genetic variants. We used whole-genome sequence data from 10,495 unrelated individuals to contrast population frequency of pathogenic variants to the expected population prevalence of the disease. Analyses included the ACMG-recommended 59 gene-condition sets for incidental findings and 463 genes associated with 265 OrphaNet conditions. A total of 25,505 variants were used to identify patterns of inflation (i.e., excess genetic risk and misclassification). Inflation increases as the level of evidence supporting the pathogenic nature of the variant decreases. We observed up to 11.5% of genetic disorders with inflation in pathogenic variant sets and up to 92.3% for the variant set with conflicting interpretations. This improved to 7.7% and 57.7%, respectively, after filtering for disease-specific allele frequency. The patterns of inflation were replicated using public data from more than 138,000 genomes. The burden of rare variants was a main contributing factor of the observed inflation, indicating collective misclassified rare variants. We also analyzed the dynamics of re-classification of variant pathogenicity in ClinVar over time, which indicates progressive improvement in variant classification. The study shows that databases include a significant proportion of wrongly ascertained variants; however, it underscores the critical role of ClinVar to contrast claims and foster validation across submitters.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29625023</pmid><doi>10.1016/j.ajhg.2018.02.019</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9297 |
ispartof | American journal of human genetics, 2018-04, Vol.102 (4), p.609-619 |
issn | 0002-9297 1537-6605 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5985337 |
source | MEDLINE; Cell Press Archives (Open access); Elsevier ScienceDirect Journals Complete; PubMed Central; EZB Electronic Journals Library |
subjects | ACMG ClinVar Disease - genetics Genetic Predisposition to Disease Genetic Variation Humans OrphaNet pathogenic variant penetrance Prevalence Reproducibility of Results Risk Factors Software Time Factors |
title | Identification of Misclassified ClinVar Variants via Disease Population Prevalence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Misclassified%20ClinVar%20Variants%20via%20Disease%20Population%20Prevalence&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Shah,%20Naisha&rft.date=2018-04-05&rft.volume=102&rft.issue=4&rft.spage=609&rft.epage=619&rft.pages=609-619&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2018.02.019&rft_dat=%3Cproquest_pubme%3E2022982354%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022982354&rft_id=info:pmid/29625023&rft_els_id=S0002929718300879&rfr_iscdi=true |