A three body problem: a genuine heterotrimetallic molecule vs. a mixture of two parent heterobimetallic molecules

This work raises a fundamental question about the “real” structure of molecular compounds containing three different metals: whether they consist of genuine heterotrimetallic species or of a mixture of parent heterobimetallic species. Heterotrimetallic complex Li2CoNi(tbaoac)6 (1, tbaoac = tert-buty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2018-06, Vol.9 (21), p.4736-4745
Hauptverfasser: Han, Haixiang, Zheng, Wei, Barry, Matthew C, Carozza, Jesse C, Alkan, Melisa, Andrey Yu Rogachev, Filatov, Alexander S, Abakumov, Artem M, Dikarev, Evgeny V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4745
container_issue 21
container_start_page 4736
container_title Chemical science (Cambridge)
container_volume 9
creator Han, Haixiang
Zheng, Wei
Barry, Matthew C
Carozza, Jesse C
Alkan, Melisa
Andrey Yu Rogachev
Filatov, Alexander S
Abakumov, Artem M
Dikarev, Evgeny V
description This work raises a fundamental question about the “real” structure of molecular compounds containing three different metals: whether they consist of genuine heterotrimetallic species or of a mixture of parent heterobimetallic species. Heterotrimetallic complex Li2CoNi(tbaoac)6 (1, tbaoac = tert-butyl acetoacetate) has been designed based on the model tetranuclear structure featuring two transition metal sites in order to be utilized as a molecular precursor for the low-temperature preparation of the LiCo0.5Ni0.5O2 battery cathode material. An investigation of the structure of 1 appeared to be very challenging, since the Co and Ni atoms have very similar atomic numbers, monoisotopic masses, and radii as well as the same oxidation state and coordination number/environment. Using a statistical analysis of heavily overlaid isotope distribution patterns of the [Li2MM′L5]+ (M/M′ = Co2, Ni2, and CoNi) ions in DART mass spectra, it was concluded that the reaction product 1 contains both heterotrimetallic and bimetallic species. A structural analogue approach has been applied to obtain Li2MMg(tbaoac)6 (M = Co (2) and Ni (3)) complexes that contain lighter, diamagnetic magnesium in the place of one of the 3d transition metals. X-ray crystallography, mass spectrometry, and NMR spectroscopy unambiguously confirmed the presence of three types of molecules in the reaction mixture that reaches an equilibrium, Li2M2L6 + Li2Mg2L6 ↔ 2Li2MMgL6, upon prolonged reflux in solution. The equilibrium mixture was shown to have a nearly statistical distribution of the three molecules, and this is fully supported by the results of theoretical calculations revealing that the stabilization energies of heterotrimetallic assemblies fall exactly in between those for the parent heterobimetallic species. The LiCo0.5Ni0.5O2 quaternary oxide has been obtained in its phase-pure form by thermal decomposition of heterometallic precursor 1 at temperatures as low as 450 °C. Its chemical composition, structure, morphology, and transition metal distribution have been studied by X-ray and electron diffraction techniques and compositional energy-dispersive X-ray mapping with nanometer resolution. The work clearly illustrates the advantages of heterometallic single-source precursors over the corresponding multi-source precursors.
doi_str_mv 10.1039/c8sc00917a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5982224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047446358</sourcerecordid><originalsourceid>FETCH-LOGICAL-p237t-937cd15652f154fe569e8b3c4fae8056095e30f7e0b62a738e630ea02a24a3763</originalsourceid><addsrcrecordid>eNplT81LwzAUD6K4MXfxLwh48dKZ5qNpPAhj-AUDL3ouafe6daRNl6TT_fdGHIL6Lu_B-30idJmSWUqYuqlyXxGiUqlP0JgSniaZYOr056ZkhKbeb0kcxlJB5TkaUaVSoigfo90ch40DwKVdHXDvbGmgvcUar6Ebmg7wBgI4G1zTQtDGNBVurYFqMID3fhaBbfMRBgfY1ji8W9xrB1040sr_LH-BzmptPEyPe4LeHu5fF0_J8uXxeTFfJj1lMiSKyWqViligTgWvQWQK8pJVvNaQE5ERJYCRWgIpM6olyyFjBDShmnLNZMYm6O5btx_KFlZVTOW0KfrYRLtDYXVT_P50zaZY230hVE4p5VHg-ijg7G4AH4q28RUYozuwgy9oTBF9pPjyuvoD3drBdbFeRHHJecZEzj4BpLeECQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047446358</pqid></control><display><type>article</type><title>A three body problem: a genuine heterotrimetallic molecule vs. a mixture of two parent heterobimetallic molecules</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Han, Haixiang ; Zheng, Wei ; Barry, Matthew C ; Carozza, Jesse C ; Alkan, Melisa ; Andrey Yu Rogachev ; Filatov, Alexander S ; Abakumov, Artem M ; Dikarev, Evgeny V</creator><creatorcontrib>Han, Haixiang ; Zheng, Wei ; Barry, Matthew C ; Carozza, Jesse C ; Alkan, Melisa ; Andrey Yu Rogachev ; Filatov, Alexander S ; Abakumov, Artem M ; Dikarev, Evgeny V</creatorcontrib><description>This work raises a fundamental question about the “real” structure of molecular compounds containing three different metals: whether they consist of genuine heterotrimetallic species or of a mixture of parent heterobimetallic species. Heterotrimetallic complex Li2CoNi(tbaoac)6 (1, tbaoac = tert-butyl acetoacetate) has been designed based on the model tetranuclear structure featuring two transition metal sites in order to be utilized as a molecular precursor for the low-temperature preparation of the LiCo0.5Ni0.5O2 battery cathode material. An investigation of the structure of 1 appeared to be very challenging, since the Co and Ni atoms have very similar atomic numbers, monoisotopic masses, and radii as well as the same oxidation state and coordination number/environment. Using a statistical analysis of heavily overlaid isotope distribution patterns of the [Li2MM′L5]+ (M/M′ = Co2, Ni2, and CoNi) ions in DART mass spectra, it was concluded that the reaction product 1 contains both heterotrimetallic and bimetallic species. A structural analogue approach has been applied to obtain Li2MMg(tbaoac)6 (M = Co (2) and Ni (3)) complexes that contain lighter, diamagnetic magnesium in the place of one of the 3d transition metals. X-ray crystallography, mass spectrometry, and NMR spectroscopy unambiguously confirmed the presence of three types of molecules in the reaction mixture that reaches an equilibrium, Li2M2L6 + Li2Mg2L6 ↔ 2Li2MMgL6, upon prolonged reflux in solution. The equilibrium mixture was shown to have a nearly statistical distribution of the three molecules, and this is fully supported by the results of theoretical calculations revealing that the stabilization energies of heterotrimetallic assemblies fall exactly in between those for the parent heterobimetallic species. The LiCo0.5Ni0.5O2 quaternary oxide has been obtained in its phase-pure form by thermal decomposition of heterometallic precursor 1 at temperatures as low as 450 °C. Its chemical composition, structure, morphology, and transition metal distribution have been studied by X-ray and electron diffraction techniques and compositional energy-dispersive X-ray mapping with nanometer resolution. The work clearly illustrates the advantages of heterometallic single-source precursors over the corresponding multi-source precursors.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c8sc00917a</identifier><identifier>PMID: 29910924</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic structure ; Bimetals ; Chemical composition ; Chemistry ; Coordination numbers ; Crystallography ; Diamagnetism ; Electrode materials ; Electron diffraction ; Mass spectra ; Mass spectrometry ; Molecular chains ; Molecular structure ; NMR spectroscopy ; Oxidation ; Precursors ; Statistical analysis ; Thermal decomposition ; Three body problem ; Transition metals ; Valence</subject><ispartof>Chemical science (Cambridge), 2018-06, Vol.9 (21), p.4736-4745</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><rights>This journal is © The Royal Society of Chemistry 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982224/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982224/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Han, Haixiang</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Barry, Matthew C</creatorcontrib><creatorcontrib>Carozza, Jesse C</creatorcontrib><creatorcontrib>Alkan, Melisa</creatorcontrib><creatorcontrib>Andrey Yu Rogachev</creatorcontrib><creatorcontrib>Filatov, Alexander S</creatorcontrib><creatorcontrib>Abakumov, Artem M</creatorcontrib><creatorcontrib>Dikarev, Evgeny V</creatorcontrib><title>A three body problem: a genuine heterotrimetallic molecule vs. a mixture of two parent heterobimetallic molecules</title><title>Chemical science (Cambridge)</title><description>This work raises a fundamental question about the “real” structure of molecular compounds containing three different metals: whether they consist of genuine heterotrimetallic species or of a mixture of parent heterobimetallic species. Heterotrimetallic complex Li2CoNi(tbaoac)6 (1, tbaoac = tert-butyl acetoacetate) has been designed based on the model tetranuclear structure featuring two transition metal sites in order to be utilized as a molecular precursor for the low-temperature preparation of the LiCo0.5Ni0.5O2 battery cathode material. An investigation of the structure of 1 appeared to be very challenging, since the Co and Ni atoms have very similar atomic numbers, monoisotopic masses, and radii as well as the same oxidation state and coordination number/environment. Using a statistical analysis of heavily overlaid isotope distribution patterns of the [Li2MM′L5]+ (M/M′ = Co2, Ni2, and CoNi) ions in DART mass spectra, it was concluded that the reaction product 1 contains both heterotrimetallic and bimetallic species. A structural analogue approach has been applied to obtain Li2MMg(tbaoac)6 (M = Co (2) and Ni (3)) complexes that contain lighter, diamagnetic magnesium in the place of one of the 3d transition metals. X-ray crystallography, mass spectrometry, and NMR spectroscopy unambiguously confirmed the presence of three types of molecules in the reaction mixture that reaches an equilibrium, Li2M2L6 + Li2Mg2L6 ↔ 2Li2MMgL6, upon prolonged reflux in solution. The equilibrium mixture was shown to have a nearly statistical distribution of the three molecules, and this is fully supported by the results of theoretical calculations revealing that the stabilization energies of heterotrimetallic assemblies fall exactly in between those for the parent heterobimetallic species. The LiCo0.5Ni0.5O2 quaternary oxide has been obtained in its phase-pure form by thermal decomposition of heterometallic precursor 1 at temperatures as low as 450 °C. Its chemical composition, structure, morphology, and transition metal distribution have been studied by X-ray and electron diffraction techniques and compositional energy-dispersive X-ray mapping with nanometer resolution. The work clearly illustrates the advantages of heterometallic single-source precursors over the corresponding multi-source precursors.</description><subject>Atomic structure</subject><subject>Bimetals</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Coordination numbers</subject><subject>Crystallography</subject><subject>Diamagnetism</subject><subject>Electrode materials</subject><subject>Electron diffraction</subject><subject>Mass spectra</subject><subject>Mass spectrometry</subject><subject>Molecular chains</subject><subject>Molecular structure</subject><subject>NMR spectroscopy</subject><subject>Oxidation</subject><subject>Precursors</subject><subject>Statistical analysis</subject><subject>Thermal decomposition</subject><subject>Three body problem</subject><subject>Transition metals</subject><subject>Valence</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNplT81LwzAUD6K4MXfxLwh48dKZ5qNpPAhj-AUDL3ouafe6daRNl6TT_fdGHIL6Lu_B-30idJmSWUqYuqlyXxGiUqlP0JgSniaZYOr056ZkhKbeb0kcxlJB5TkaUaVSoigfo90ch40DwKVdHXDvbGmgvcUar6Ebmg7wBgI4G1zTQtDGNBVurYFqMID3fhaBbfMRBgfY1ji8W9xrB1040sr_LH-BzmptPEyPe4LeHu5fF0_J8uXxeTFfJj1lMiSKyWqViligTgWvQWQK8pJVvNaQE5ERJYCRWgIpM6olyyFjBDShmnLNZMYm6O5btx_KFlZVTOW0KfrYRLtDYXVT_P50zaZY230hVE4p5VHg-ijg7G4AH4q28RUYozuwgy9oTBF9pPjyuvoD3drBdbFeRHHJecZEzj4BpLeECQ</recordid><startdate>20180607</startdate><enddate>20180607</enddate><creator>Han, Haixiang</creator><creator>Zheng, Wei</creator><creator>Barry, Matthew C</creator><creator>Carozza, Jesse C</creator><creator>Alkan, Melisa</creator><creator>Andrey Yu Rogachev</creator><creator>Filatov, Alexander S</creator><creator>Abakumov, Artem M</creator><creator>Dikarev, Evgeny V</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180607</creationdate><title>A three body problem: a genuine heterotrimetallic molecule vs. a mixture of two parent heterobimetallic molecules</title><author>Han, Haixiang ; Zheng, Wei ; Barry, Matthew C ; Carozza, Jesse C ; Alkan, Melisa ; Andrey Yu Rogachev ; Filatov, Alexander S ; Abakumov, Artem M ; Dikarev, Evgeny V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p237t-937cd15652f154fe569e8b3c4fae8056095e30f7e0b62a738e630ea02a24a3763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic structure</topic><topic>Bimetals</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Coordination numbers</topic><topic>Crystallography</topic><topic>Diamagnetism</topic><topic>Electrode materials</topic><topic>Electron diffraction</topic><topic>Mass spectra</topic><topic>Mass spectrometry</topic><topic>Molecular chains</topic><topic>Molecular structure</topic><topic>NMR spectroscopy</topic><topic>Oxidation</topic><topic>Precursors</topic><topic>Statistical analysis</topic><topic>Thermal decomposition</topic><topic>Three body problem</topic><topic>Transition metals</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Haixiang</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Barry, Matthew C</creatorcontrib><creatorcontrib>Carozza, Jesse C</creatorcontrib><creatorcontrib>Alkan, Melisa</creatorcontrib><creatorcontrib>Andrey Yu Rogachev</creatorcontrib><creatorcontrib>Filatov, Alexander S</creatorcontrib><creatorcontrib>Abakumov, Artem M</creatorcontrib><creatorcontrib>Dikarev, Evgeny V</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Haixiang</au><au>Zheng, Wei</au><au>Barry, Matthew C</au><au>Carozza, Jesse C</au><au>Alkan, Melisa</au><au>Andrey Yu Rogachev</au><au>Filatov, Alexander S</au><au>Abakumov, Artem M</au><au>Dikarev, Evgeny V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A three body problem: a genuine heterotrimetallic molecule vs. a mixture of two parent heterobimetallic molecules</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2018-06-07</date><risdate>2018</risdate><volume>9</volume><issue>21</issue><spage>4736</spage><epage>4745</epage><pages>4736-4745</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>This work raises a fundamental question about the “real” structure of molecular compounds containing three different metals: whether they consist of genuine heterotrimetallic species or of a mixture of parent heterobimetallic species. Heterotrimetallic complex Li2CoNi(tbaoac)6 (1, tbaoac = tert-butyl acetoacetate) has been designed based on the model tetranuclear structure featuring two transition metal sites in order to be utilized as a molecular precursor for the low-temperature preparation of the LiCo0.5Ni0.5O2 battery cathode material. An investigation of the structure of 1 appeared to be very challenging, since the Co and Ni atoms have very similar atomic numbers, monoisotopic masses, and radii as well as the same oxidation state and coordination number/environment. Using a statistical analysis of heavily overlaid isotope distribution patterns of the [Li2MM′L5]+ (M/M′ = Co2, Ni2, and CoNi) ions in DART mass spectra, it was concluded that the reaction product 1 contains both heterotrimetallic and bimetallic species. A structural analogue approach has been applied to obtain Li2MMg(tbaoac)6 (M = Co (2) and Ni (3)) complexes that contain lighter, diamagnetic magnesium in the place of one of the 3d transition metals. X-ray crystallography, mass spectrometry, and NMR spectroscopy unambiguously confirmed the presence of three types of molecules in the reaction mixture that reaches an equilibrium, Li2M2L6 + Li2Mg2L6 ↔ 2Li2MMgL6, upon prolonged reflux in solution. The equilibrium mixture was shown to have a nearly statistical distribution of the three molecules, and this is fully supported by the results of theoretical calculations revealing that the stabilization energies of heterotrimetallic assemblies fall exactly in between those for the parent heterobimetallic species. The LiCo0.5Ni0.5O2 quaternary oxide has been obtained in its phase-pure form by thermal decomposition of heterometallic precursor 1 at temperatures as low as 450 °C. Its chemical composition, structure, morphology, and transition metal distribution have been studied by X-ray and electron diffraction techniques and compositional energy-dispersive X-ray mapping with nanometer resolution. The work clearly illustrates the advantages of heterometallic single-source precursors over the corresponding multi-source precursors.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>29910924</pmid><doi>10.1039/c8sc00917a</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2018-06, Vol.9 (21), p.4736-4745
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5982224
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Atomic structure
Bimetals
Chemical composition
Chemistry
Coordination numbers
Crystallography
Diamagnetism
Electrode materials
Electron diffraction
Mass spectra
Mass spectrometry
Molecular chains
Molecular structure
NMR spectroscopy
Oxidation
Precursors
Statistical analysis
Thermal decomposition
Three body problem
Transition metals
Valence
title A three body problem: a genuine heterotrimetallic molecule vs. a mixture of two parent heterobimetallic molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20three%20body%20problem:%20a%20genuine%20heterotrimetallic%20molecule%20vs.%20a%20mixture%20of%20two%20parent%20heterobimetallic%20molecules&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Han,%20Haixiang&rft.date=2018-06-07&rft.volume=9&rft.issue=21&rft.spage=4736&rft.epage=4745&rft.pages=4736-4745&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c8sc00917a&rft_dat=%3Cproquest_pubme%3E2047446358%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047446358&rft_id=info:pmid/29910924&rfr_iscdi=true