Predicting the DNP-SENS efficiency in reactive heterogeneous catalysts from hydrophilicity† †Electronic supplementary information (ESI) available: All experimental details such as detailed synthetic procedures, elemental analysis, dynamic nuclear polarization enhanced NMR spectroscopy, nitrogen sorption, transmission-electron microscopy, and computational results, as well as NMR data for all the spectra. See DOI: 10.1039/c8sc00532j
Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS). Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2018-04, Vol.9 (21), p.4866-4872 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4872 |
---|---|
container_issue | 21 |
container_start_page | 4866 |
container_title | Chemical science (Cambridge) |
container_volume | 9 |
creator | Pump, Eva Bendjeriou-Sedjerari, Anissa Viger-Gravel, Jasmine Gajan, David Scotto, Baptiste Samantaray, Manoja K. Abou-Hamad, Edy Gurinov, Andrei Almaksoud, Walid Cao, Zhen Lesage, Anne Cavallo, Luigi Emsley, Lyndon Basset, Jean-Marie |
description | Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS).
Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS). However, the technique is limited when using highly sensitive heterogeneous catalysts due to secondary reaction of surface organometallic fragments (SOMFs) with stable radical polarization agents. Here, we observe that in non-porous silica nanoparticles (NPs) (
d
particle
= 15 nm) some DNP enhanced NMR or SENS characterizations are possible, depending on the metal-loading of the SOMF and the type of SOMF substituents (methyl, isobutyl, neopentyl). This unexpected observation suggests that aggregation of the nanoparticles occurs in non-polar solvents (such as
ortho
-dichlorobenzene) leading to (partial) protection of the SOMF inside the interparticle space, thereby preventing reaction with bulky polarization agents. We discover that the DNP SENS efficiency is correlated with the hydrophilicity of the SOMF/support, which depends on the carbon and SOMF concentration. Nitrogen sorption measurements to determine the BET constant (
C
BET
) were performed. This constant allows us to predict the aggregation of silica nanoparticles and consequently the efficiency of DNP SENS. Under optimal conditions,
C
BET
> 60, we found signal enhancement factors of up to 30. |
doi_str_mv | 10.1039/c8sc00532j |
format | Article |
fullrecord | <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5982197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_5982197</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_59821973</originalsourceid><addsrcrecordid>eNqlUc1uFDEMHhCIVqUXnsBHkHbb-WFppwckBIvaQ5eK5T5yE89OqkwSxZmF4cSj8Ba8D0-CZ7uqhDgSKUpsf_782c6yF0V-UuRVfarOWeX5oirvHmeHZf66mL9ZVPWTh3-ZH2THzHe5nKoqFuXZs-ygrOsir6v68NGvm0jaqGTcBlJH8GF1M18vV2ugtjXKkFMjGAeRUDBbgo4SRb8hR35gUJjQjpwY2uh76EYdfeiMlcw0_v7xE-QuLakUvTMKeAjBUk8uYZxoWx97TMY7eLlcX70C3KKxeGvpAt5ZC_QtUDQ7uAVNSYIsHKoD5L1NGnh0IjwJfYhekR4i8QxoX8cCukmiEZ8eHfaCc4OyhBGCtxjN93sF5Dp0kg6r68_AYaeZlQ_jDJxJu5aBfQwTeAYpouPeMIs1p32HIOQPSeg0KN-HIe34RYjoGmwSHaL-K0l_8k7FtAwRZBSA4pt2cF8dT2BNspBPVxfw77KfZ09btEzH-_coe_tx-eX95TwMtz1pJb1HtE2Q-cmsG4-m-TviTNds_LZZ1OdlUZ9V_03wB3B642A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting the DNP-SENS efficiency in reactive heterogeneous catalysts from hydrophilicity† †Electronic supplementary information (ESI) available: All experimental details such as detailed synthetic procedures, elemental analysis, dynamic nuclear polarization enhanced NMR spectroscopy, nitrogen sorption, transmission-electron microscopy, and computational results, as well as NMR data for all the spectra. See DOI: 10.1039/c8sc00532j</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Pump, Eva ; Bendjeriou-Sedjerari, Anissa ; Viger-Gravel, Jasmine ; Gajan, David ; Scotto, Baptiste ; Samantaray, Manoja K. ; Abou-Hamad, Edy ; Gurinov, Andrei ; Almaksoud, Walid ; Cao, Zhen ; Lesage, Anne ; Cavallo, Luigi ; Emsley, Lyndon ; Basset, Jean-Marie</creator><creatorcontrib>Pump, Eva ; Bendjeriou-Sedjerari, Anissa ; Viger-Gravel, Jasmine ; Gajan, David ; Scotto, Baptiste ; Samantaray, Manoja K. ; Abou-Hamad, Edy ; Gurinov, Andrei ; Almaksoud, Walid ; Cao, Zhen ; Lesage, Anne ; Cavallo, Luigi ; Emsley, Lyndon ; Basset, Jean-Marie</creatorcontrib><description>Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS).
Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS). However, the technique is limited when using highly sensitive heterogeneous catalysts due to secondary reaction of surface organometallic fragments (SOMFs) with stable radical polarization agents. Here, we observe that in non-porous silica nanoparticles (NPs) (
d
particle
= 15 nm) some DNP enhanced NMR or SENS characterizations are possible, depending on the metal-loading of the SOMF and the type of SOMF substituents (methyl, isobutyl, neopentyl). This unexpected observation suggests that aggregation of the nanoparticles occurs in non-polar solvents (such as
ortho
-dichlorobenzene) leading to (partial) protection of the SOMF inside the interparticle space, thereby preventing reaction with bulky polarization agents. We discover that the DNP SENS efficiency is correlated with the hydrophilicity of the SOMF/support, which depends on the carbon and SOMF concentration. Nitrogen sorption measurements to determine the BET constant (
C
BET
) were performed. This constant allows us to predict the aggregation of silica nanoparticles and consequently the efficiency of DNP SENS. Under optimal conditions,
C
BET
> 60, we found signal enhancement factors of up to 30.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c8sc00532j</identifier><identifier>PMID: 29910939</identifier><language>eng</language><publisher>Royal Society of Chemistry</publisher><subject>Chemistry</subject><ispartof>Chemical science (Cambridge), 2018-04, Vol.9 (21), p.4866-4872</ispartof><rights>This journal is © The Royal Society of Chemistry 2018 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982197/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982197/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Pump, Eva</creatorcontrib><creatorcontrib>Bendjeriou-Sedjerari, Anissa</creatorcontrib><creatorcontrib>Viger-Gravel, Jasmine</creatorcontrib><creatorcontrib>Gajan, David</creatorcontrib><creatorcontrib>Scotto, Baptiste</creatorcontrib><creatorcontrib>Samantaray, Manoja K.</creatorcontrib><creatorcontrib>Abou-Hamad, Edy</creatorcontrib><creatorcontrib>Gurinov, Andrei</creatorcontrib><creatorcontrib>Almaksoud, Walid</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Lesage, Anne</creatorcontrib><creatorcontrib>Cavallo, Luigi</creatorcontrib><creatorcontrib>Emsley, Lyndon</creatorcontrib><creatorcontrib>Basset, Jean-Marie</creatorcontrib><title>Predicting the DNP-SENS efficiency in reactive heterogeneous catalysts from hydrophilicity† †Electronic supplementary information (ESI) available: All experimental details such as detailed synthetic procedures, elemental analysis, dynamic nuclear polarization enhanced NMR spectroscopy, nitrogen sorption, transmission-electron microscopy, and computational results, as well as NMR data for all the spectra. See DOI: 10.1039/c8sc00532j</title><title>Chemical science (Cambridge)</title><description>Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS).
Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS). However, the technique is limited when using highly sensitive heterogeneous catalysts due to secondary reaction of surface organometallic fragments (SOMFs) with stable radical polarization agents. Here, we observe that in non-porous silica nanoparticles (NPs) (
d
particle
= 15 nm) some DNP enhanced NMR or SENS characterizations are possible, depending on the metal-loading of the SOMF and the type of SOMF substituents (methyl, isobutyl, neopentyl). This unexpected observation suggests that aggregation of the nanoparticles occurs in non-polar solvents (such as
ortho
-dichlorobenzene) leading to (partial) protection of the SOMF inside the interparticle space, thereby preventing reaction with bulky polarization agents. We discover that the DNP SENS efficiency is correlated with the hydrophilicity of the SOMF/support, which depends on the carbon and SOMF concentration. Nitrogen sorption measurements to determine the BET constant (
C
BET
) were performed. This constant allows us to predict the aggregation of silica nanoparticles and consequently the efficiency of DNP SENS. Under optimal conditions,
C
BET
> 60, we found signal enhancement factors of up to 30.</description><subject>Chemistry</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqlUc1uFDEMHhCIVqUXnsBHkHbb-WFppwckBIvaQ5eK5T5yE89OqkwSxZmF4cSj8Ba8D0-CZ7uqhDgSKUpsf_782c6yF0V-UuRVfarOWeX5oirvHmeHZf66mL9ZVPWTh3-ZH2THzHe5nKoqFuXZs-ygrOsir6v68NGvm0jaqGTcBlJH8GF1M18vV2ugtjXKkFMjGAeRUDBbgo4SRb8hR35gUJjQjpwY2uh76EYdfeiMlcw0_v7xE-QuLakUvTMKeAjBUk8uYZxoWx97TMY7eLlcX70C3KKxeGvpAt5ZC_QtUDQ7uAVNSYIsHKoD5L1NGnh0IjwJfYhekR4i8QxoX8cCukmiEZ8eHfaCc4OyhBGCtxjN93sF5Dp0kg6r68_AYaeZlQ_jDJxJu5aBfQwTeAYpouPeMIs1p32HIOQPSeg0KN-HIe34RYjoGmwSHaL-K0l_8k7FtAwRZBSA4pt2cF8dT2BNspBPVxfw77KfZ09btEzH-_coe_tx-eX95TwMtz1pJb1HtE2Q-cmsG4-m-TviTNds_LZZ1OdlUZ9V_03wB3B642A</recordid><startdate>20180430</startdate><enddate>20180430</enddate><creator>Pump, Eva</creator><creator>Bendjeriou-Sedjerari, Anissa</creator><creator>Viger-Gravel, Jasmine</creator><creator>Gajan, David</creator><creator>Scotto, Baptiste</creator><creator>Samantaray, Manoja K.</creator><creator>Abou-Hamad, Edy</creator><creator>Gurinov, Andrei</creator><creator>Almaksoud, Walid</creator><creator>Cao, Zhen</creator><creator>Lesage, Anne</creator><creator>Cavallo, Luigi</creator><creator>Emsley, Lyndon</creator><creator>Basset, Jean-Marie</creator><general>Royal Society of Chemistry</general><scope>5PM</scope></search><sort><creationdate>20180430</creationdate><title>Predicting the DNP-SENS efficiency in reactive heterogeneous catalysts from hydrophilicity† †Electronic supplementary information (ESI) available: All experimental details such as detailed synthetic procedures, elemental analysis, dynamic nuclear polarization enhanced NMR spectroscopy, nitrogen sorption, transmission-electron microscopy, and computational results, as well as NMR data for all the spectra. See DOI: 10.1039/c8sc00532j</title><author>Pump, Eva ; Bendjeriou-Sedjerari, Anissa ; Viger-Gravel, Jasmine ; Gajan, David ; Scotto, Baptiste ; Samantaray, Manoja K. ; Abou-Hamad, Edy ; Gurinov, Andrei ; Almaksoud, Walid ; Cao, Zhen ; Lesage, Anne ; Cavallo, Luigi ; Emsley, Lyndon ; Basset, Jean-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_59821973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pump, Eva</creatorcontrib><creatorcontrib>Bendjeriou-Sedjerari, Anissa</creatorcontrib><creatorcontrib>Viger-Gravel, Jasmine</creatorcontrib><creatorcontrib>Gajan, David</creatorcontrib><creatorcontrib>Scotto, Baptiste</creatorcontrib><creatorcontrib>Samantaray, Manoja K.</creatorcontrib><creatorcontrib>Abou-Hamad, Edy</creatorcontrib><creatorcontrib>Gurinov, Andrei</creatorcontrib><creatorcontrib>Almaksoud, Walid</creatorcontrib><creatorcontrib>Cao, Zhen</creatorcontrib><creatorcontrib>Lesage, Anne</creatorcontrib><creatorcontrib>Cavallo, Luigi</creatorcontrib><creatorcontrib>Emsley, Lyndon</creatorcontrib><creatorcontrib>Basset, Jean-Marie</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pump, Eva</au><au>Bendjeriou-Sedjerari, Anissa</au><au>Viger-Gravel, Jasmine</au><au>Gajan, David</au><au>Scotto, Baptiste</au><au>Samantaray, Manoja K.</au><au>Abou-Hamad, Edy</au><au>Gurinov, Andrei</au><au>Almaksoud, Walid</au><au>Cao, Zhen</au><au>Lesage, Anne</au><au>Cavallo, Luigi</au><au>Emsley, Lyndon</au><au>Basset, Jean-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the DNP-SENS efficiency in reactive heterogeneous catalysts from hydrophilicity† †Electronic supplementary information (ESI) available: All experimental details such as detailed synthetic procedures, elemental analysis, dynamic nuclear polarization enhanced NMR spectroscopy, nitrogen sorption, transmission-electron microscopy, and computational results, as well as NMR data for all the spectra. See DOI: 10.1039/c8sc00532j</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2018-04-30</date><risdate>2018</risdate><volume>9</volume><issue>21</issue><spage>4866</spage><epage>4872</epage><pages>4866-4872</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS).
Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS). However, the technique is limited when using highly sensitive heterogeneous catalysts due to secondary reaction of surface organometallic fragments (SOMFs) with stable radical polarization agents. Here, we observe that in non-porous silica nanoparticles (NPs) (
d
particle
= 15 nm) some DNP enhanced NMR or SENS characterizations are possible, depending on the metal-loading of the SOMF and the type of SOMF substituents (methyl, isobutyl, neopentyl). This unexpected observation suggests that aggregation of the nanoparticles occurs in non-polar solvents (such as
ortho
-dichlorobenzene) leading to (partial) protection of the SOMF inside the interparticle space, thereby preventing reaction with bulky polarization agents. We discover that the DNP SENS efficiency is correlated with the hydrophilicity of the SOMF/support, which depends on the carbon and SOMF concentration. Nitrogen sorption measurements to determine the BET constant (
C
BET
) were performed. This constant allows us to predict the aggregation of silica nanoparticles and consequently the efficiency of DNP SENS. Under optimal conditions,
C
BET
> 60, we found signal enhancement factors of up to 30.</abstract><pub>Royal Society of Chemistry</pub><pmid>29910939</pmid><doi>10.1039/c8sc00532j</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2018-04, Vol.9 (21), p.4866-4872 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5982197 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Chemistry |
title | Predicting the DNP-SENS efficiency in reactive heterogeneous catalysts from hydrophilicity† †Electronic supplementary information (ESI) available: All experimental details such as detailed synthetic procedures, elemental analysis, dynamic nuclear polarization enhanced NMR spectroscopy, nitrogen sorption, transmission-electron microscopy, and computational results, as well as NMR data for all the spectra. See DOI: 10.1039/c8sc00532j |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20DNP-SENS%20efficiency%20in%20reactive%20heterogeneous%20catalysts%20from%20hydrophilicity%E2%80%A0%20%E2%80%A0Electronic%20supplementary%20information%20(ESI)%20available:%20All%20experimental%20details%20such%20as%20detailed%20synthetic%20procedures,%20elemental%20analysis,%20dynamic%20nuclear%20polarization%20enhanced%20NMR%20spectroscopy,%20nitrogen%20sorption,%20transmission-electron%20microscopy,%20and%20computational%20results,%20as%20well%20as%20NMR%20data%20for%20all%20the%20spectra.%20See%20DOI:%2010.1039/c8sc00532j&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Pump,%20Eva&rft.date=2018-04-30&rft.volume=9&rft.issue=21&rft.spage=4866&rft.epage=4872&rft.pages=4866-4872&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c8sc00532j&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_5982197%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29910939&rfr_iscdi=true |