A Standard Method To Inactivate Bacillus anthracis Spores to Sterility via Gamma Irradiation
In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore mater...
Gespeichert in:
Veröffentlicht in: | Applied and environmental microbiology 2018-06, Vol.84 (12), p.e00106-18 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e00106-18 |
container_title | Applied and environmental microbiology |
container_volume | 84 |
creator | Cote, Christopher K Buhr, Tony Bernhards, Casey B Bohmke, Matthew D Calm, Alena M Esteban-Trexler, Josephine S Hunter, Melissa Katoski, Sarah E Kennihan, Neil Klimko, Christopher P Miller, Jeremy A Minter, Zachary A Pfarr, Jerry W Prugh, Amber M Quirk, Avery V Rivers, Bryan A Shea, April A Shoe, Jennifer L Sickler, Todd M Young, Alice A Fetterer, David P Welkos, Susan L Bozue, Joel A McPherson, Derrell Fountain, 3rd, Augustus W Gibbons, Henry S |
description | In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of
that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of
spores containing 3 × 10
CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D
) values and irradiation doses required to ensure sterility (D
) to the point at which the probability of detecting a viable spore is 10
Furthermore, spores of a genetically tagged strain of
strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of
for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques.
The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live
(anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated
spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism. |
doi_str_mv | 10.1128/AEM.00106-18 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5981071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073505060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c1de7e6c99899dd571d9be1544597043e7a108d63d6c8bd5d08c14d1fdcd2d703</originalsourceid><addsrcrecordid>eNpdkcFrFDEUxoModlu9eZaAFw9OfS-TZJKLsJZaF1o8tN6EkE2ybsrMZE0yC_3vnW1rUU-Px_u9j-_jI-QNwikiUx-X51enAAiyQfWMLBC0akTbyudkAaB1wxiHI3Jcyi0AcJDqJTliWgqOSi7IjyW9rnb0Nnt6Feo2eXqT6Gq0rsa9rYF-ti72_VSoHes2z0uh17uUQ6E1za8hxz7WO7qPll7YYbB0lbP10daYxlfkxcb2Jbx-nCfk-5fzm7OvzeW3i9XZ8rJxHFltHPrQBem0Vlp7Lzr0eh1QcC50B7wNnUVQXrZeOrX2woNyyD1uvPPMd9CekE8PurtpPQTvwliz7c0ux8HmO5NsNP9exrg1P9PeCK0QOpwF3j8K5PRrCqWaIRYX-t6OIU3FMGCiZcDVAX33H3qbpjzO8WaqawUIkAdHHx4ol1MpOWyezCCYQ21mrs3c12ZQzfjbvwM8wX96an8DMyqS-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073505060</pqid></control><display><type>article</type><title>A Standard Method To Inactivate Bacillus anthracis Spores to Sterility via Gamma Irradiation</title><source>American Society for Microbiology</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Cote, Christopher K ; Buhr, Tony ; Bernhards, Casey B ; Bohmke, Matthew D ; Calm, Alena M ; Esteban-Trexler, Josephine S ; Hunter, Melissa ; Katoski, Sarah E ; Kennihan, Neil ; Klimko, Christopher P ; Miller, Jeremy A ; Minter, Zachary A ; Pfarr, Jerry W ; Prugh, Amber M ; Quirk, Avery V ; Rivers, Bryan A ; Shea, April A ; Shoe, Jennifer L ; Sickler, Todd M ; Young, Alice A ; Fetterer, David P ; Welkos, Susan L ; Bozue, Joel A ; McPherson, Derrell ; Fountain, 3rd, Augustus W ; Gibbons, Henry S</creator><contributor>Schottel, Janet L.</contributor><creatorcontrib>Cote, Christopher K ; Buhr, Tony ; Bernhards, Casey B ; Bohmke, Matthew D ; Calm, Alena M ; Esteban-Trexler, Josephine S ; Hunter, Melissa ; Katoski, Sarah E ; Kennihan, Neil ; Klimko, Christopher P ; Miller, Jeremy A ; Minter, Zachary A ; Pfarr, Jerry W ; Prugh, Amber M ; Quirk, Avery V ; Rivers, Bryan A ; Shea, April A ; Shoe, Jennifer L ; Sickler, Todd M ; Young, Alice A ; Fetterer, David P ; Welkos, Susan L ; Bozue, Joel A ; McPherson, Derrell ; Fountain, 3rd, Augustus W ; Gibbons, Henry S ; Schottel, Janet L.</creatorcontrib><description>In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of
that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of
spores containing 3 × 10
CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D
) values and irradiation doses required to ensure sterility (D
) to the point at which the probability of detecting a viable spore is 10
Furthermore, spores of a genetically tagged strain of
strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of
for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques.
The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live
(anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated
spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.00106-18</identifier><identifier>PMID: 29654186</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Bacillus anthracis ; Bacteria ; Deactivation ; Diagnostic systems ; Gamma irradiation ; Gamma rays ; Inactivation ; Irradiation ; Methods ; Microbiology ; Reagents ; Spores ; Spotlight ; Sterility ; Sterilization</subject><ispartof>Applied and environmental microbiology, 2018-06, Vol.84 (12), p.e00106-18</ispartof><rights>Copyright American Society for Microbiology Jun 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c1de7e6c99899dd571d9be1544597043e7a108d63d6c8bd5d08c14d1fdcd2d703</citedby><cites>FETCH-LOGICAL-c412t-c1de7e6c99899dd571d9be1544597043e7a108d63d6c8bd5d08c14d1fdcd2d703</cites><orcidid>0000-0001-6959-8176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981071/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981071/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29654186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schottel, Janet L.</contributor><creatorcontrib>Cote, Christopher K</creatorcontrib><creatorcontrib>Buhr, Tony</creatorcontrib><creatorcontrib>Bernhards, Casey B</creatorcontrib><creatorcontrib>Bohmke, Matthew D</creatorcontrib><creatorcontrib>Calm, Alena M</creatorcontrib><creatorcontrib>Esteban-Trexler, Josephine S</creatorcontrib><creatorcontrib>Hunter, Melissa</creatorcontrib><creatorcontrib>Katoski, Sarah E</creatorcontrib><creatorcontrib>Kennihan, Neil</creatorcontrib><creatorcontrib>Klimko, Christopher P</creatorcontrib><creatorcontrib>Miller, Jeremy A</creatorcontrib><creatorcontrib>Minter, Zachary A</creatorcontrib><creatorcontrib>Pfarr, Jerry W</creatorcontrib><creatorcontrib>Prugh, Amber M</creatorcontrib><creatorcontrib>Quirk, Avery V</creatorcontrib><creatorcontrib>Rivers, Bryan A</creatorcontrib><creatorcontrib>Shea, April A</creatorcontrib><creatorcontrib>Shoe, Jennifer L</creatorcontrib><creatorcontrib>Sickler, Todd M</creatorcontrib><creatorcontrib>Young, Alice A</creatorcontrib><creatorcontrib>Fetterer, David P</creatorcontrib><creatorcontrib>Welkos, Susan L</creatorcontrib><creatorcontrib>Bozue, Joel A</creatorcontrib><creatorcontrib>McPherson, Derrell</creatorcontrib><creatorcontrib>Fountain, 3rd, Augustus W</creatorcontrib><creatorcontrib>Gibbons, Henry S</creatorcontrib><title>A Standard Method To Inactivate Bacillus anthracis Spores to Sterility via Gamma Irradiation</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of
that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of
spores containing 3 × 10
CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D
) values and irradiation doses required to ensure sterility (D
) to the point at which the probability of detecting a viable spore is 10
Furthermore, spores of a genetically tagged strain of
strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of
for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques.
The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live
(anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated
spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism.</description><subject>Bacillus anthracis</subject><subject>Bacteria</subject><subject>Deactivation</subject><subject>Diagnostic systems</subject><subject>Gamma irradiation</subject><subject>Gamma rays</subject><subject>Inactivation</subject><subject>Irradiation</subject><subject>Methods</subject><subject>Microbiology</subject><subject>Reagents</subject><subject>Spores</subject><subject>Spotlight</subject><subject>Sterility</subject><subject>Sterilization</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkcFrFDEUxoModlu9eZaAFw9OfS-TZJKLsJZaF1o8tN6EkE2ybsrMZE0yC_3vnW1rUU-Px_u9j-_jI-QNwikiUx-X51enAAiyQfWMLBC0akTbyudkAaB1wxiHI3Jcyi0AcJDqJTliWgqOSi7IjyW9rnb0Nnt6Feo2eXqT6Gq0rsa9rYF-ti72_VSoHes2z0uh17uUQ6E1za8hxz7WO7qPll7YYbB0lbP10daYxlfkxcb2Jbx-nCfk-5fzm7OvzeW3i9XZ8rJxHFltHPrQBem0Vlp7Lzr0eh1QcC50B7wNnUVQXrZeOrX2woNyyD1uvPPMd9CekE8PurtpPQTvwliz7c0ux8HmO5NsNP9exrg1P9PeCK0QOpwF3j8K5PRrCqWaIRYX-t6OIU3FMGCiZcDVAX33H3qbpjzO8WaqawUIkAdHHx4ol1MpOWyezCCYQ21mrs3c12ZQzfjbvwM8wX96an8DMyqS-g</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Cote, Christopher K</creator><creator>Buhr, Tony</creator><creator>Bernhards, Casey B</creator><creator>Bohmke, Matthew D</creator><creator>Calm, Alena M</creator><creator>Esteban-Trexler, Josephine S</creator><creator>Hunter, Melissa</creator><creator>Katoski, Sarah E</creator><creator>Kennihan, Neil</creator><creator>Klimko, Christopher P</creator><creator>Miller, Jeremy A</creator><creator>Minter, Zachary A</creator><creator>Pfarr, Jerry W</creator><creator>Prugh, Amber M</creator><creator>Quirk, Avery V</creator><creator>Rivers, Bryan A</creator><creator>Shea, April A</creator><creator>Shoe, Jennifer L</creator><creator>Sickler, Todd M</creator><creator>Young, Alice A</creator><creator>Fetterer, David P</creator><creator>Welkos, Susan L</creator><creator>Bozue, Joel A</creator><creator>McPherson, Derrell</creator><creator>Fountain, 3rd, Augustus W</creator><creator>Gibbons, Henry S</creator><general>American Society for Microbiology</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6959-8176</orcidid></search><sort><creationdate>20180615</creationdate><title>A Standard Method To Inactivate Bacillus anthracis Spores to Sterility via Gamma Irradiation</title><author>Cote, Christopher K ; Buhr, Tony ; Bernhards, Casey B ; Bohmke, Matthew D ; Calm, Alena M ; Esteban-Trexler, Josephine S ; Hunter, Melissa ; Katoski, Sarah E ; Kennihan, Neil ; Klimko, Christopher P ; Miller, Jeremy A ; Minter, Zachary A ; Pfarr, Jerry W ; Prugh, Amber M ; Quirk, Avery V ; Rivers, Bryan A ; Shea, April A ; Shoe, Jennifer L ; Sickler, Todd M ; Young, Alice A ; Fetterer, David P ; Welkos, Susan L ; Bozue, Joel A ; McPherson, Derrell ; Fountain, 3rd, Augustus W ; Gibbons, Henry S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c1de7e6c99899dd571d9be1544597043e7a108d63d6c8bd5d08c14d1fdcd2d703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacillus anthracis</topic><topic>Bacteria</topic><topic>Deactivation</topic><topic>Diagnostic systems</topic><topic>Gamma irradiation</topic><topic>Gamma rays</topic><topic>Inactivation</topic><topic>Irradiation</topic><topic>Methods</topic><topic>Microbiology</topic><topic>Reagents</topic><topic>Spores</topic><topic>Spotlight</topic><topic>Sterility</topic><topic>Sterilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cote, Christopher K</creatorcontrib><creatorcontrib>Buhr, Tony</creatorcontrib><creatorcontrib>Bernhards, Casey B</creatorcontrib><creatorcontrib>Bohmke, Matthew D</creatorcontrib><creatorcontrib>Calm, Alena M</creatorcontrib><creatorcontrib>Esteban-Trexler, Josephine S</creatorcontrib><creatorcontrib>Hunter, Melissa</creatorcontrib><creatorcontrib>Katoski, Sarah E</creatorcontrib><creatorcontrib>Kennihan, Neil</creatorcontrib><creatorcontrib>Klimko, Christopher P</creatorcontrib><creatorcontrib>Miller, Jeremy A</creatorcontrib><creatorcontrib>Minter, Zachary A</creatorcontrib><creatorcontrib>Pfarr, Jerry W</creatorcontrib><creatorcontrib>Prugh, Amber M</creatorcontrib><creatorcontrib>Quirk, Avery V</creatorcontrib><creatorcontrib>Rivers, Bryan A</creatorcontrib><creatorcontrib>Shea, April A</creatorcontrib><creatorcontrib>Shoe, Jennifer L</creatorcontrib><creatorcontrib>Sickler, Todd M</creatorcontrib><creatorcontrib>Young, Alice A</creatorcontrib><creatorcontrib>Fetterer, David P</creatorcontrib><creatorcontrib>Welkos, Susan L</creatorcontrib><creatorcontrib>Bozue, Joel A</creatorcontrib><creatorcontrib>McPherson, Derrell</creatorcontrib><creatorcontrib>Fountain, 3rd, Augustus W</creatorcontrib><creatorcontrib>Gibbons, Henry S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cote, Christopher K</au><au>Buhr, Tony</au><au>Bernhards, Casey B</au><au>Bohmke, Matthew D</au><au>Calm, Alena M</au><au>Esteban-Trexler, Josephine S</au><au>Hunter, Melissa</au><au>Katoski, Sarah E</au><au>Kennihan, Neil</au><au>Klimko, Christopher P</au><au>Miller, Jeremy A</au><au>Minter, Zachary A</au><au>Pfarr, Jerry W</au><au>Prugh, Amber M</au><au>Quirk, Avery V</au><au>Rivers, Bryan A</au><au>Shea, April A</au><au>Shoe, Jennifer L</au><au>Sickler, Todd M</au><au>Young, Alice A</au><au>Fetterer, David P</au><au>Welkos, Susan L</au><au>Bozue, Joel A</au><au>McPherson, Derrell</au><au>Fountain, 3rd, Augustus W</au><au>Gibbons, Henry S</au><au>Schottel, Janet L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Standard Method To Inactivate Bacillus anthracis Spores to Sterility via Gamma Irradiation</atitle><jtitle>Applied and environmental microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2018-06-15</date><risdate>2018</risdate><volume>84</volume><issue>12</issue><spage>e00106-18</spage><pages>e00106-18-</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><abstract>In 2015, a laboratory of the United States Department of Defense (DoD) inadvertently shipped preparations of gamma-irradiated spores of
that contained live spores. In response, a systematic evidence-based method for preparing, concentrating, irradiating, and verifying the inactivation of spore materials was developed. We demonstrate the consistency of spore preparations across multiple biological replicates and show that two different DoD institutions independently obtained comparable dose-inactivation curves for a monodisperse suspension of
spores containing 3 × 10
CFU. Spore preparations from three different institutions and three strain backgrounds yielded similar decimal reduction (D
) values and irradiation doses required to ensure sterility (D
) to the point at which the probability of detecting a viable spore is 10
Furthermore, spores of a genetically tagged strain of
strain Sterne were used to show that high densities of dead spores suppress the recovery of viable spores. Together, we present an integrated method for preparing, irradiating, and verifying the inactivation of spores of
for use as standard reagents for testing and evaluating detection and diagnostic devices and techniques.
The inadvertent shipment by a U.S. Department of Defense (DoD) laboratory of live
(anthrax) spores to U.S. and international destinations revealed the need to standardize inactivation methods for materials derived from biological select agents and toxins (BSAT) and for the development of evidence-based methods to prevent the recurrence of such an event. Following a retrospective analysis of the procedures previously employed to generate inactivated
spores, a study was commissioned by the DoD to provide data required to support the production of inactivated spores for the biodefense community. The results of this work are presented in this publication, which details the method by which spores can be prepared, irradiated, and tested, such that the chance of finding residual living spores in any given preparation is 1/1,000,000. These irradiated spores are used to test equipment and methods for the detection of agents of biological warfare and bioterrorism.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>29654186</pmid><doi>10.1128/AEM.00106-18</doi><orcidid>https://orcid.org/0000-0001-6959-8176</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and environmental microbiology, 2018-06, Vol.84 (12), p.e00106-18 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5981071 |
source | American Society for Microbiology; PubMed Central; Alma/SFX Local Collection |
subjects | Bacillus anthracis Bacteria Deactivation Diagnostic systems Gamma irradiation Gamma rays Inactivation Irradiation Methods Microbiology Reagents Spores Spotlight Sterility Sterilization |
title | A Standard Method To Inactivate Bacillus anthracis Spores to Sterility via Gamma Irradiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Standard%20Method%20To%20Inactivate%20Bacillus%20anthracis%20Spores%20to%20Sterility%20via%20Gamma%20Irradiation&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Cote,%20Christopher%20K&rft.date=2018-06-15&rft.volume=84&rft.issue=12&rft.spage=e00106-18&rft.pages=e00106-18-&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/AEM.00106-18&rft_dat=%3Cproquest_pubme%3E2073505060%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073505060&rft_id=info:pmid/29654186&rfr_iscdi=true |