Spontaneous development of intratumoral heterogeneity in a transposon‐induced mouse model of glioma

Glioma is the most common form of malignant brain cancer in adults. The Sleeping Beauty (SB) transposon‐based glioma mouse model allows for effective in vivo analysis of candidate genes. In the present study, we developed a transposon vector that encodes the triple combination of platelet‐derived gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer science 2018-05, Vol.109 (5), p.1513-1523
Hauptverfasser: Sumiyoshi, Keisuke, Koso, Hideto, Watanabe, Sumiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1523
container_issue 5
container_start_page 1513
container_title Cancer science
container_volume 109
creator Sumiyoshi, Keisuke
Koso, Hideto
Watanabe, Sumiko
description Glioma is the most common form of malignant brain cancer in adults. The Sleeping Beauty (SB) transposon‐based glioma mouse model allows for effective in vivo analysis of candidate genes. In the present study, we developed a transposon vector that encodes the triple combination of platelet‐derived growth factor subunit A (PDGFA), and shRNAs against Nf1 and Trp53 (shNf1/shp53). Initiation and progression of glioma in the brain were monitored by expression of a fluorescent protein. Transduction of the vector into neural progenitor and stem cells (NPC) in the subventricular zone (SVZ) of the neonatal brain induced proliferation of oligodendrocyte precursor cells, and promoted formation of highly penetrant malignant gliomas within 2‐4 months. Cells isolated from the tumors were capable of forming secondary tumors. Two transposon vectors, encoding either PDGFA or shNf1/shp53 were co‐electroporated into NPC. Cells expressing PDGFA or shNf1/shp53 were labeled with unique fluorescent proteins allowing visualization of the spatial distribution of cells with different genetic alterations within the same tumor. Tumor cells located at the center of tumors expressed PDGFA at higher levels than those located at the periphery, indicating that intratumoral heterogeneity in PDGFA expression levels spontaneously developed within the same tumor. Tumor cells comprising the palisading necrosis strongly expressed PDGFA, suggesting that PDGFA signaling is involved in hypoxic responses in glioma. The transposon vectors developed are compatible with any genetically engineered mouse model, providing a useful tool for the functional analysis of candidate genes in glioma. A single transposon vector efficiently induced malignant glioma. Co‐transduction of two transposon vectors spontaneously generated intratumoral heterogeneity.
doi_str_mv 10.1111/cas.13579
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5980157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2018666007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5339-f130350732dd4085bac1ce718e83b4eb3b99589f96aab0ab27fb251c457362103</originalsourceid><addsrcrecordid>eNp1kc9qFTEUh4NYbHt14QvIgBu7mDZ_JjPJRigXq0LBRXUdMpkztymZZExmKnfnI_iMPkkznVqqYBZJ4Hx8nHN-CL0m-JTkc2Z0OiWMN_IZOiKskmWDcf38_t-UEjN6iI5TusGY1ZWsXqBDKnnD60ocIbgag5-0hzCnooNbcGEcwE9F6Avrp6ineQhRu-IaJohhBx7stM-lQhe56tMYUvC_f_6yvpsNdMWQRZDvDtzi2DkbBv0SHfTaJXj18G7Qt4sPX7efyssvHz9vzy9LwxmTZU8YZhw3jHZdhQVvtSEGGiJAsLaClrVSciF7WWvdYt3Spm8pJ6biDaspwWyD3q_ecW4H6AwsEzg1RjvouFdBW_V3xdtrtQu3ikuBSbZs0LsHQQzfZ0iTGmwy4Ny6IUUxEXVdY7ygb_9Bb8IcfR5P0Uosi6ZCZupkpUwMKUXoH5shWC3hqRyeug8vs2-edv9I_kkrA2cr8MM62P_fpLbnV6vyDvuwpqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486494289</pqid></control><display><type>article</type><title>Spontaneous development of intratumoral heterogeneity in a transposon‐induced mouse model of glioma</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>PubMed Central</source><creator>Sumiyoshi, Keisuke ; Koso, Hideto ; Watanabe, Sumiko</creator><creatorcontrib>Sumiyoshi, Keisuke ; Koso, Hideto ; Watanabe, Sumiko</creatorcontrib><description>Glioma is the most common form of malignant brain cancer in adults. The Sleeping Beauty (SB) transposon‐based glioma mouse model allows for effective in vivo analysis of candidate genes. In the present study, we developed a transposon vector that encodes the triple combination of platelet‐derived growth factor subunit A (PDGFA), and shRNAs against Nf1 and Trp53 (shNf1/shp53). Initiation and progression of glioma in the brain were monitored by expression of a fluorescent protein. Transduction of the vector into neural progenitor and stem cells (NPC) in the subventricular zone (SVZ) of the neonatal brain induced proliferation of oligodendrocyte precursor cells, and promoted formation of highly penetrant malignant gliomas within 2‐4 months. Cells isolated from the tumors were capable of forming secondary tumors. Two transposon vectors, encoding either PDGFA or shNf1/shp53 were co‐electroporated into NPC. Cells expressing PDGFA or shNf1/shp53 were labeled with unique fluorescent proteins allowing visualization of the spatial distribution of cells with different genetic alterations within the same tumor. Tumor cells located at the center of tumors expressed PDGFA at higher levels than those located at the periphery, indicating that intratumoral heterogeneity in PDGFA expression levels spontaneously developed within the same tumor. Tumor cells comprising the palisading necrosis strongly expressed PDGFA, suggesting that PDGFA signaling is involved in hypoxic responses in glioma. The transposon vectors developed are compatible with any genetically engineered mouse model, providing a useful tool for the functional analysis of candidate genes in glioma. A single transposon vector efficiently induced malignant glioma. Co‐transduction of two transposon vectors spontaneously generated intratumoral heterogeneity.</description><identifier>ISSN: 1347-9032</identifier><identifier>EISSN: 1349-7006</identifier><identifier>DOI: 10.1111/cas.13579</identifier><identifier>PMID: 29575648</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Biotechnology ; Brain cancer ; Brain Neoplasms - etiology ; Brain Neoplasms - genetics ; Brain Neoplasms - pathology ; Brain tumors ; Cell Hypoxia ; Cell Proliferation ; Cooperation ; Deoxyribonucleic acid ; Disease Models, Animal ; DNA ; DNA Transposable Elements - genetics ; Experiments ; Genetic engineering ; Glial stem cells ; Glioma ; Glioma - etiology ; Glioma - genetics ; Glioma - pathology ; Hypoxia ; Medical prognosis ; Mice ; Mice, Inbred ICR ; mouse model ; Mutation ; Neonates ; Neurofibromin 1 - genetics ; NIH 3T3 Cells ; Original ; Platelet-Derived Growth Factor - genetics ; Platelet-Derived Growth Factor - physiology ; platelet‐derived growth factor subunit A ; Signal Transduction ; Spatial distribution ; Stem cell transplantation ; Stem cells ; Subventricular zone ; transposon ; Transposons ; Tumor cells ; tumor heterogeneity ; Tumor Suppressor Protein p53 - genetics</subject><ispartof>Cancer science, 2018-05, Vol.109 (5), p.1513-1523</ispartof><rights>2018 The Authors. published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2018 The Authors. Cancer Science published by John Wiley &amp; Sons Australia, Ltd on behalf of Japanese Cancer Association.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5339-f130350732dd4085bac1ce718e83b4eb3b99589f96aab0ab27fb251c457362103</citedby><cites>FETCH-LOGICAL-c5339-f130350732dd4085bac1ce718e83b4eb3b99589f96aab0ab27fb251c457362103</cites><orcidid>0000-0002-8986-7617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980157/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980157/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29575648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sumiyoshi, Keisuke</creatorcontrib><creatorcontrib>Koso, Hideto</creatorcontrib><creatorcontrib>Watanabe, Sumiko</creatorcontrib><title>Spontaneous development of intratumoral heterogeneity in a transposon‐induced mouse model of glioma</title><title>Cancer science</title><addtitle>Cancer Sci</addtitle><description>Glioma is the most common form of malignant brain cancer in adults. The Sleeping Beauty (SB) transposon‐based glioma mouse model allows for effective in vivo analysis of candidate genes. In the present study, we developed a transposon vector that encodes the triple combination of platelet‐derived growth factor subunit A (PDGFA), and shRNAs against Nf1 and Trp53 (shNf1/shp53). Initiation and progression of glioma in the brain were monitored by expression of a fluorescent protein. Transduction of the vector into neural progenitor and stem cells (NPC) in the subventricular zone (SVZ) of the neonatal brain induced proliferation of oligodendrocyte precursor cells, and promoted formation of highly penetrant malignant gliomas within 2‐4 months. Cells isolated from the tumors were capable of forming secondary tumors. Two transposon vectors, encoding either PDGFA or shNf1/shp53 were co‐electroporated into NPC. Cells expressing PDGFA or shNf1/shp53 were labeled with unique fluorescent proteins allowing visualization of the spatial distribution of cells with different genetic alterations within the same tumor. Tumor cells located at the center of tumors expressed PDGFA at higher levels than those located at the periphery, indicating that intratumoral heterogeneity in PDGFA expression levels spontaneously developed within the same tumor. Tumor cells comprising the palisading necrosis strongly expressed PDGFA, suggesting that PDGFA signaling is involved in hypoxic responses in glioma. The transposon vectors developed are compatible with any genetically engineered mouse model, providing a useful tool for the functional analysis of candidate genes in glioma. A single transposon vector efficiently induced malignant glioma. Co‐transduction of two transposon vectors spontaneously generated intratumoral heterogeneity.</description><subject>Animals</subject><subject>Biotechnology</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - etiology</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain tumors</subject><subject>Cell Hypoxia</subject><subject>Cell Proliferation</subject><subject>Cooperation</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Models, Animal</subject><subject>DNA</subject><subject>DNA Transposable Elements - genetics</subject><subject>Experiments</subject><subject>Genetic engineering</subject><subject>Glial stem cells</subject><subject>Glioma</subject><subject>Glioma - etiology</subject><subject>Glioma - genetics</subject><subject>Glioma - pathology</subject><subject>Hypoxia</subject><subject>Medical prognosis</subject><subject>Mice</subject><subject>Mice, Inbred ICR</subject><subject>mouse model</subject><subject>Mutation</subject><subject>Neonates</subject><subject>Neurofibromin 1 - genetics</subject><subject>NIH 3T3 Cells</subject><subject>Original</subject><subject>Platelet-Derived Growth Factor - genetics</subject><subject>Platelet-Derived Growth Factor - physiology</subject><subject>platelet‐derived growth factor subunit A</subject><subject>Signal Transduction</subject><subject>Spatial distribution</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Subventricular zone</subject><subject>transposon</subject><subject>Transposons</subject><subject>Tumor cells</subject><subject>tumor heterogeneity</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><issn>1347-9032</issn><issn>1349-7006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc9qFTEUh4NYbHt14QvIgBu7mDZ_JjPJRigXq0LBRXUdMpkztymZZExmKnfnI_iMPkkznVqqYBZJ4Hx8nHN-CL0m-JTkc2Z0OiWMN_IZOiKskmWDcf38_t-UEjN6iI5TusGY1ZWsXqBDKnnD60ocIbgag5-0hzCnooNbcGEcwE9F6Avrp6ineQhRu-IaJohhBx7stM-lQhe56tMYUvC_f_6yvpsNdMWQRZDvDtzi2DkbBv0SHfTaJXj18G7Qt4sPX7efyssvHz9vzy9LwxmTZU8YZhw3jHZdhQVvtSEGGiJAsLaClrVSciF7WWvdYt3Spm8pJ6biDaspwWyD3q_ecW4H6AwsEzg1RjvouFdBW_V3xdtrtQu3ikuBSbZs0LsHQQzfZ0iTGmwy4Ny6IUUxEXVdY7ygb_9Bb8IcfR5P0Uosi6ZCZupkpUwMKUXoH5shWC3hqRyeug8vs2-edv9I_kkrA2cr8MM62P_fpLbnV6vyDvuwpqY</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Sumiyoshi, Keisuke</creator><creator>Koso, Hideto</creator><creator>Watanabe, Sumiko</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8986-7617</orcidid></search><sort><creationdate>201805</creationdate><title>Spontaneous development of intratumoral heterogeneity in a transposon‐induced mouse model of glioma</title><author>Sumiyoshi, Keisuke ; Koso, Hideto ; Watanabe, Sumiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5339-f130350732dd4085bac1ce718e83b4eb3b99589f96aab0ab27fb251c457362103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biotechnology</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - etiology</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain tumors</topic><topic>Cell Hypoxia</topic><topic>Cell Proliferation</topic><topic>Cooperation</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Models, Animal</topic><topic>DNA</topic><topic>DNA Transposable Elements - genetics</topic><topic>Experiments</topic><topic>Genetic engineering</topic><topic>Glial stem cells</topic><topic>Glioma</topic><topic>Glioma - etiology</topic><topic>Glioma - genetics</topic><topic>Glioma - pathology</topic><topic>Hypoxia</topic><topic>Medical prognosis</topic><topic>Mice</topic><topic>Mice, Inbred ICR</topic><topic>mouse model</topic><topic>Mutation</topic><topic>Neonates</topic><topic>Neurofibromin 1 - genetics</topic><topic>NIH 3T3 Cells</topic><topic>Original</topic><topic>Platelet-Derived Growth Factor - genetics</topic><topic>Platelet-Derived Growth Factor - physiology</topic><topic>platelet‐derived growth factor subunit A</topic><topic>Signal Transduction</topic><topic>Spatial distribution</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Subventricular zone</topic><topic>transposon</topic><topic>Transposons</topic><topic>Tumor cells</topic><topic>tumor heterogeneity</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sumiyoshi, Keisuke</creatorcontrib><creatorcontrib>Koso, Hideto</creatorcontrib><creatorcontrib>Watanabe, Sumiko</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sumiyoshi, Keisuke</au><au>Koso, Hideto</au><au>Watanabe, Sumiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spontaneous development of intratumoral heterogeneity in a transposon‐induced mouse model of glioma</atitle><jtitle>Cancer science</jtitle><addtitle>Cancer Sci</addtitle><date>2018-05</date><risdate>2018</risdate><volume>109</volume><issue>5</issue><spage>1513</spage><epage>1523</epage><pages>1513-1523</pages><issn>1347-9032</issn><eissn>1349-7006</eissn><abstract>Glioma is the most common form of malignant brain cancer in adults. The Sleeping Beauty (SB) transposon‐based glioma mouse model allows for effective in vivo analysis of candidate genes. In the present study, we developed a transposon vector that encodes the triple combination of platelet‐derived growth factor subunit A (PDGFA), and shRNAs against Nf1 and Trp53 (shNf1/shp53). Initiation and progression of glioma in the brain were monitored by expression of a fluorescent protein. Transduction of the vector into neural progenitor and stem cells (NPC) in the subventricular zone (SVZ) of the neonatal brain induced proliferation of oligodendrocyte precursor cells, and promoted formation of highly penetrant malignant gliomas within 2‐4 months. Cells isolated from the tumors were capable of forming secondary tumors. Two transposon vectors, encoding either PDGFA or shNf1/shp53 were co‐electroporated into NPC. Cells expressing PDGFA or shNf1/shp53 were labeled with unique fluorescent proteins allowing visualization of the spatial distribution of cells with different genetic alterations within the same tumor. Tumor cells located at the center of tumors expressed PDGFA at higher levels than those located at the periphery, indicating that intratumoral heterogeneity in PDGFA expression levels spontaneously developed within the same tumor. Tumor cells comprising the palisading necrosis strongly expressed PDGFA, suggesting that PDGFA signaling is involved in hypoxic responses in glioma. The transposon vectors developed are compatible with any genetically engineered mouse model, providing a useful tool for the functional analysis of candidate genes in glioma. A single transposon vector efficiently induced malignant glioma. Co‐transduction of two transposon vectors spontaneously generated intratumoral heterogeneity.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29575648</pmid><doi>10.1111/cas.13579</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8986-7617</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1347-9032
ispartof Cancer science, 2018-05, Vol.109 (5), p.1513-1523
issn 1347-9032
1349-7006
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5980157
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; PubMed Central
subjects Animals
Biotechnology
Brain cancer
Brain Neoplasms - etiology
Brain Neoplasms - genetics
Brain Neoplasms - pathology
Brain tumors
Cell Hypoxia
Cell Proliferation
Cooperation
Deoxyribonucleic acid
Disease Models, Animal
DNA
DNA Transposable Elements - genetics
Experiments
Genetic engineering
Glial stem cells
Glioma
Glioma - etiology
Glioma - genetics
Glioma - pathology
Hypoxia
Medical prognosis
Mice
Mice, Inbred ICR
mouse model
Mutation
Neonates
Neurofibromin 1 - genetics
NIH 3T3 Cells
Original
Platelet-Derived Growth Factor - genetics
Platelet-Derived Growth Factor - physiology
platelet‐derived growth factor subunit A
Signal Transduction
Spatial distribution
Stem cell transplantation
Stem cells
Subventricular zone
transposon
Transposons
Tumor cells
tumor heterogeneity
Tumor Suppressor Protein p53 - genetics
title Spontaneous development of intratumoral heterogeneity in a transposon‐induced mouse model of glioma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spontaneous%20development%20of%20intratumoral%20heterogeneity%20in%20a%20transposon%E2%80%90induced%20mouse%20model%20of%20glioma&rft.jtitle=Cancer%20science&rft.au=Sumiyoshi,%20Keisuke&rft.date=2018-05&rft.volume=109&rft.issue=5&rft.spage=1513&rft.epage=1523&rft.pages=1513-1523&rft.issn=1347-9032&rft.eissn=1349-7006&rft_id=info:doi/10.1111/cas.13579&rft_dat=%3Cproquest_pubme%3E2018666007%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486494289&rft_id=info:pmid/29575648&rfr_iscdi=true