Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model

Abstract Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical medicine and biology 2018-04, Vol.35 (suppl_1), p.1-27
Hauptverfasser: Nestor-Bergmann, Alexander, Goddard, Georgina, Woolner, Sarah, Jensen, Oliver E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue suppl_1
container_start_page 1
container_title Mathematical medicine and biology
container_volume 35
creator Nestor-Bergmann, Alexander
Goddard, Georgina
Woolner, Sarah
Jensen, Oliver E
description Abstract Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted.
doi_str_mv 10.1093/imammb/dqx008
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5978812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imammb/dqx008</oup_id><sourcerecordid>1949696482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-f1c92474cca00662320511682966e420192a606b0d98b56227d9a9ce3416cf93</originalsourceid><addsrcrecordid>eNqFkctrGzEQh0VJycPNsdeiYy6bSNq1VnMplNA8wFAouYtZaRyraB-WdkP833eNnbQ99aRB8_HNMD_GPktxLQWUN6HFtm1u_PZVCPOBncuqrgujhTp5q5cAZ-wi519CqFJqc8rOlAFQEupzFn5SxDF0z9xRjDxvcCCOnectuQ12weH8OSbKmYeOI8_DTGOMO-5D7pOnRJ7TEMYNxTC1fMp7F_IXSiO9Fg3mud_2nuIn9nGNMdPl8V2wp7vvT7cPxerH_ePtt1XhKqPHYi0dqKqunEMhtFalEks5b61Aa6qUkKBQC90ID6ZZaqVqDwiOykpqt4Zywb4etMPUtOQddWPCaIc0HyrtbI_B_tvpwsY-9y92CbUxUs2Cq6Mg9duJ8mjbkPfHwY76KVsJFWjQldmjxQF1qc850fp9jBR2n449pGMP6cz8l793e6ff4vgzu5-G_7h-A_A8nLY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949696482</pqid></control><display><type>article</type><title>Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Nestor-Bergmann, Alexander ; Goddard, Georgina ; Woolner, Sarah ; Jensen, Oliver E</creator><creatorcontrib>Nestor-Bergmann, Alexander ; Goddard, Georgina ; Woolner, Sarah ; Jensen, Oliver E</creatorcontrib><description>Abstract Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted.</description><identifier>ISSN: 1477-8599</identifier><identifier>EISSN: 1477-8602</identifier><identifier>DOI: 10.1093/imammb/dqx008</identifier><identifier>PMID: 28992197</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Biomechanical Phenomena ; Cell Shape - physiology ; Computer Simulation ; Elastic Modulus ; Epithelial Cells - cytology ; Epithelial Cells - physiology ; Epithelium - embryology ; Epithelium - physiology ; Mathematical Concepts ; Models, Biological ; Stress, Mechanical ; Xenopus laevis - embryology</subject><ispartof>Mathematical medicine and biology, 2018-04, Vol.35 (suppl_1), p.1-27</ispartof><rights>The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-f1c92474cca00662320511682966e420192a606b0d98b56227d9a9ce3416cf93</citedby><cites>FETCH-LOGICAL-c486t-f1c92474cca00662320511682966e420192a606b0d98b56227d9a9ce3416cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28992197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nestor-Bergmann, Alexander</creatorcontrib><creatorcontrib>Goddard, Georgina</creatorcontrib><creatorcontrib>Woolner, Sarah</creatorcontrib><creatorcontrib>Jensen, Oliver E</creatorcontrib><title>Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model</title><title>Mathematical medicine and biology</title><addtitle>Math Med Biol</addtitle><description>Abstract Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Cell Shape - physiology</subject><subject>Computer Simulation</subject><subject>Elastic Modulus</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - physiology</subject><subject>Epithelium - embryology</subject><subject>Epithelium - physiology</subject><subject>Mathematical Concepts</subject><subject>Models, Biological</subject><subject>Stress, Mechanical</subject><subject>Xenopus laevis - embryology</subject><issn>1477-8599</issn><issn>1477-8602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctrGzEQh0VJycPNsdeiYy6bSNq1VnMplNA8wFAouYtZaRyraB-WdkP833eNnbQ99aRB8_HNMD_GPktxLQWUN6HFtm1u_PZVCPOBncuqrgujhTp5q5cAZ-wi519CqFJqc8rOlAFQEupzFn5SxDF0z9xRjDxvcCCOnectuQ12weH8OSbKmYeOI8_DTGOMO-5D7pOnRJ7TEMYNxTC1fMp7F_IXSiO9Fg3mud_2nuIn9nGNMdPl8V2wp7vvT7cPxerH_ePtt1XhKqPHYi0dqKqunEMhtFalEks5b61Aa6qUkKBQC90ID6ZZaqVqDwiOykpqt4Zywb4etMPUtOQddWPCaIc0HyrtbI_B_tvpwsY-9y92CbUxUs2Cq6Mg9duJ8mjbkPfHwY76KVsJFWjQldmjxQF1qc850fp9jBR2n449pGMP6cz8l793e6ff4vgzu5-G_7h-A_A8nLY</recordid><startdate>20180402</startdate><enddate>20180402</enddate><creator>Nestor-Bergmann, Alexander</creator><creator>Goddard, Georgina</creator><creator>Woolner, Sarah</creator><creator>Jensen, Oliver E</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180402</creationdate><title>Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model</title><author>Nestor-Bergmann, Alexander ; Goddard, Georgina ; Woolner, Sarah ; Jensen, Oliver E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-f1c92474cca00662320511682966e420192a606b0d98b56227d9a9ce3416cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Cell Shape - physiology</topic><topic>Computer Simulation</topic><topic>Elastic Modulus</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - physiology</topic><topic>Epithelium - embryology</topic><topic>Epithelium - physiology</topic><topic>Mathematical Concepts</topic><topic>Models, Biological</topic><topic>Stress, Mechanical</topic><topic>Xenopus laevis - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nestor-Bergmann, Alexander</creatorcontrib><creatorcontrib>Goddard, Georgina</creatorcontrib><creatorcontrib>Woolner, Sarah</creatorcontrib><creatorcontrib>Jensen, Oliver E</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mathematical medicine and biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nestor-Bergmann, Alexander</au><au>Goddard, Georgina</au><au>Woolner, Sarah</au><au>Jensen, Oliver E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model</atitle><jtitle>Mathematical medicine and biology</jtitle><addtitle>Math Med Biol</addtitle><date>2018-04-02</date><risdate>2018</risdate><volume>35</volume><issue>suppl_1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>1477-8599</issn><eissn>1477-8602</eissn><abstract>Abstract Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28992197</pmid><doi>10.1093/imammb/dqx008</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1477-8599
ispartof Mathematical medicine and biology, 2018-04, Vol.35 (suppl_1), p.1-27
issn 1477-8599
1477-8602
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5978812
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Alma/SFX Local Collection
subjects Animals
Biomechanical Phenomena
Cell Shape - physiology
Computer Simulation
Elastic Modulus
Epithelial Cells - cytology
Epithelial Cells - physiology
Epithelium - embryology
Epithelium - physiology
Mathematical Concepts
Models, Biological
Stress, Mechanical
Xenopus laevis - embryology
title Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relating%20cell%20shape%20and%20mechanical%20stress%20in%20a%20spatially%20disordered%20epithelium%20using%20a%20vertex-based%20model&rft.jtitle=Mathematical%20medicine%20and%20biology&rft.au=Nestor-Bergmann,%20Alexander&rft.date=2018-04-02&rft.volume=35&rft.issue=suppl_1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=1477-8599&rft.eissn=1477-8602&rft_id=info:doi/10.1093/imammb/dqx008&rft_dat=%3Cproquest_pubme%3E1949696482%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949696482&rft_id=info:pmid/28992197&rft_oup_id=10.1093/imammb/dqx008&rfr_iscdi=true