Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model
Abstract Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model,...
Gespeichert in:
Veröffentlicht in: | Mathematical medicine and biology 2018-04, Vol.35 (suppl_1), p.1-27 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | suppl_1 |
container_start_page | 1 |
container_title | Mathematical medicine and biology |
container_volume | 35 |
creator | Nestor-Bergmann, Alexander Goddard, Georgina Woolner, Sarah Jensen, Oliver E |
description | Abstract
Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted. |
doi_str_mv | 10.1093/imammb/dqx008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5978812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imammb/dqx008</oup_id><sourcerecordid>1949696482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-f1c92474cca00662320511682966e420192a606b0d98b56227d9a9ce3416cf93</originalsourceid><addsrcrecordid>eNqFkctrGzEQh0VJycPNsdeiYy6bSNq1VnMplNA8wFAouYtZaRyraB-WdkP833eNnbQ99aRB8_HNMD_GPktxLQWUN6HFtm1u_PZVCPOBncuqrgujhTp5q5cAZ-wi519CqFJqc8rOlAFQEupzFn5SxDF0z9xRjDxvcCCOnectuQ12weH8OSbKmYeOI8_DTGOMO-5D7pOnRJ7TEMYNxTC1fMp7F_IXSiO9Fg3mud_2nuIn9nGNMdPl8V2wp7vvT7cPxerH_ePtt1XhKqPHYi0dqKqunEMhtFalEks5b61Aa6qUkKBQC90ID6ZZaqVqDwiOykpqt4Zywb4etMPUtOQddWPCaIc0HyrtbI_B_tvpwsY-9y92CbUxUs2Cq6Mg9duJ8mjbkPfHwY76KVsJFWjQldmjxQF1qc850fp9jBR2n449pGMP6cz8l793e6ff4vgzu5-G_7h-A_A8nLY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949696482</pqid></control><display><type>article</type><title>Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Nestor-Bergmann, Alexander ; Goddard, Georgina ; Woolner, Sarah ; Jensen, Oliver E</creator><creatorcontrib>Nestor-Bergmann, Alexander ; Goddard, Georgina ; Woolner, Sarah ; Jensen, Oliver E</creatorcontrib><description>Abstract
Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted.</description><identifier>ISSN: 1477-8599</identifier><identifier>EISSN: 1477-8602</identifier><identifier>DOI: 10.1093/imammb/dqx008</identifier><identifier>PMID: 28992197</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Biomechanical Phenomena ; Cell Shape - physiology ; Computer Simulation ; Elastic Modulus ; Epithelial Cells - cytology ; Epithelial Cells - physiology ; Epithelium - embryology ; Epithelium - physiology ; Mathematical Concepts ; Models, Biological ; Stress, Mechanical ; Xenopus laevis - embryology</subject><ispartof>Mathematical medicine and biology, 2018-04, Vol.35 (suppl_1), p.1-27</ispartof><rights>The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-f1c92474cca00662320511682966e420192a606b0d98b56227d9a9ce3416cf93</citedby><cites>FETCH-LOGICAL-c486t-f1c92474cca00662320511682966e420192a606b0d98b56227d9a9ce3416cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28992197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nestor-Bergmann, Alexander</creatorcontrib><creatorcontrib>Goddard, Georgina</creatorcontrib><creatorcontrib>Woolner, Sarah</creatorcontrib><creatorcontrib>Jensen, Oliver E</creatorcontrib><title>Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model</title><title>Mathematical medicine and biology</title><addtitle>Math Med Biol</addtitle><description>Abstract
Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted.</description><subject>Animals</subject><subject>Biomechanical Phenomena</subject><subject>Cell Shape - physiology</subject><subject>Computer Simulation</subject><subject>Elastic Modulus</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - physiology</subject><subject>Epithelium - embryology</subject><subject>Epithelium - physiology</subject><subject>Mathematical Concepts</subject><subject>Models, Biological</subject><subject>Stress, Mechanical</subject><subject>Xenopus laevis - embryology</subject><issn>1477-8599</issn><issn>1477-8602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctrGzEQh0VJycPNsdeiYy6bSNq1VnMplNA8wFAouYtZaRyraB-WdkP833eNnbQ99aRB8_HNMD_GPktxLQWUN6HFtm1u_PZVCPOBncuqrgujhTp5q5cAZ-wi519CqFJqc8rOlAFQEupzFn5SxDF0z9xRjDxvcCCOnectuQ12weH8OSbKmYeOI8_DTGOMO-5D7pOnRJ7TEMYNxTC1fMp7F_IXSiO9Fg3mud_2nuIn9nGNMdPl8V2wp7vvT7cPxerH_ePtt1XhKqPHYi0dqKqunEMhtFalEks5b61Aa6qUkKBQC90ID6ZZaqVqDwiOykpqt4Zywb4etMPUtOQddWPCaIc0HyrtbI_B_tvpwsY-9y92CbUxUs2Cq6Mg9duJ8mjbkPfHwY76KVsJFWjQldmjxQF1qc850fp9jBR2n449pGMP6cz8l793e6ff4vgzu5-G_7h-A_A8nLY</recordid><startdate>20180402</startdate><enddate>20180402</enddate><creator>Nestor-Bergmann, Alexander</creator><creator>Goddard, Georgina</creator><creator>Woolner, Sarah</creator><creator>Jensen, Oliver E</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20180402</creationdate><title>Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model</title><author>Nestor-Bergmann, Alexander ; Goddard, Georgina ; Woolner, Sarah ; Jensen, Oliver E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-f1c92474cca00662320511682966e420192a606b0d98b56227d9a9ce3416cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biomechanical Phenomena</topic><topic>Cell Shape - physiology</topic><topic>Computer Simulation</topic><topic>Elastic Modulus</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - physiology</topic><topic>Epithelium - embryology</topic><topic>Epithelium - physiology</topic><topic>Mathematical Concepts</topic><topic>Models, Biological</topic><topic>Stress, Mechanical</topic><topic>Xenopus laevis - embryology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nestor-Bergmann, Alexander</creatorcontrib><creatorcontrib>Goddard, Georgina</creatorcontrib><creatorcontrib>Woolner, Sarah</creatorcontrib><creatorcontrib>Jensen, Oliver E</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mathematical medicine and biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nestor-Bergmann, Alexander</au><au>Goddard, Georgina</au><au>Woolner, Sarah</au><au>Jensen, Oliver E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model</atitle><jtitle>Mathematical medicine and biology</jtitle><addtitle>Math Med Biol</addtitle><date>2018-04-02</date><risdate>2018</risdate><volume>35</volume><issue>suppl_1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><issn>1477-8599</issn><eissn>1477-8602</eissn><abstract>Abstract
Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28992197</pmid><doi>10.1093/imammb/dqx008</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-8599 |
ispartof | Mathematical medicine and biology, 2018-04, Vol.35 (suppl_1), p.1-27 |
issn | 1477-8599 1477-8602 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5978812 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Alma/SFX Local Collection |
subjects | Animals Biomechanical Phenomena Cell Shape - physiology Computer Simulation Elastic Modulus Epithelial Cells - cytology Epithelial Cells - physiology Epithelium - embryology Epithelium - physiology Mathematical Concepts Models, Biological Stress, Mechanical Xenopus laevis - embryology |
title | Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relating%20cell%20shape%20and%20mechanical%20stress%20in%20a%20spatially%20disordered%20epithelium%20using%20a%20vertex-based%20model&rft.jtitle=Mathematical%20medicine%20and%20biology&rft.au=Nestor-Bergmann,%20Alexander&rft.date=2018-04-02&rft.volume=35&rft.issue=suppl_1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.issn=1477-8599&rft.eissn=1477-8602&rft_id=info:doi/10.1093/imammb/dqx008&rft_dat=%3Cproquest_pubme%3E1949696482%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949696482&rft_id=info:pmid/28992197&rft_oup_id=10.1093/imammb/dqx008&rfr_iscdi=true |