The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique
The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the A...
Gespeichert in:
Veröffentlicht in: | Materials 2018-05, Vol.11 (5), p.843 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 843 |
container_title | Materials |
container_volume | 11 |
creator | Durejko, Tomasz Aniszewska, Justyna Ziętala, Michał Antolak-Dudka, Anna Czujko, Tomasz Varin, Robert A Paserin, Vlad |
description | The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample-LENS-fabricated from the ATOMET 28 powder-was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03⁻0.1%. Unexpectedly, the solid sample-LENS-fabricated from the reference, a purely spherical Fe 99.8 powder-exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R² = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations. |
doi_str_mv | 10.3390/ma11050843 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5978220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042754010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-97b43f8e36eace80dd7561d570a0f0260ba91ce4c19c0ddf65e51e2c8fdcba1e3</originalsourceid><addsrcrecordid>eNpdkVFrFTEQhYMottS--AMk4IsIq5NNsrt5ES6lrYVrFbziY8gmk96U3c012a20v96U1lo7Lxk4H4czOYS8ZvCBcwUfR8MYSOgEf0b2mVJNxZQQzx_te-Qw50sowznravWS7NWq7XgLYp_4zRbparcbgjVziBONnp4OsV8Gk-hPM2OqVnMcww06epaK_i3-dpgy9THRlXNhDldIv5hp8cbOSwrTBe2vqaHr4_PvdIN2O4VfC74iL7wZMh7evwfkx8nx5uhztf56ena0WldWQDNXqu0F9x3yBo3FDpxrZcOcbMGAh7qB3ihmUVimbBF9I1EyrG3nne0NQ35APt357pZ-RGdxmpMZ9C6F0aRrHU3Q_ytT2OqLeKVl-ZG6hmLw7t4gxZI7z3oM2eIwmAnjknUNom6lAHaLvn2CXsYlTeW8QslGSBCNKtT7O8qmmHNC_xCGgb5tUP9rsMBvHsd_QP_2xf8ABPGXGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056450469</pqid></control><display><type>article</type><title>The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Durejko, Tomasz ; Aniszewska, Justyna ; Ziętala, Michał ; Antolak-Dudka, Anna ; Czujko, Tomasz ; Varin, Robert A ; Paserin, Vlad</creator><creatorcontrib>Durejko, Tomasz ; Aniszewska, Justyna ; Ziętala, Michał ; Antolak-Dudka, Anna ; Czujko, Tomasz ; Varin, Robert A ; Paserin, Vlad</creatorcontrib><description>The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample-LENS-fabricated from the ATOMET 28 powder-was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03⁻0.1%. Unexpectedly, the solid sample-LENS-fabricated from the reference, a purely spherical Fe 99.8 powder-exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R² = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma11050843</identifier><identifier>PMID: 29783704</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additive manufacturing ; Atomizing ; Cross-sections ; Dependence ; Feeding ; Flow velocity ; Inhomogeneity ; Lenses ; Metal powders ; Microtomography ; Morphology ; Particle size distribution ; Porosity ; Spherical powders</subject><ispartof>Materials, 2018-05, Vol.11 (5), p.843</ispartof><rights>Copyright MDPI AG 2018</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-97b43f8e36eace80dd7561d570a0f0260ba91ce4c19c0ddf65e51e2c8fdcba1e3</citedby><cites>FETCH-LOGICAL-c406t-97b43f8e36eace80dd7561d570a0f0260ba91ce4c19c0ddf65e51e2c8fdcba1e3</cites><orcidid>0000-0003-1610-7446 ; 0000-0001-8032-8863 ; 0000-0002-7065-6385 ; 0000-0002-3278-1265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978220/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29783704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Durejko, Tomasz</creatorcontrib><creatorcontrib>Aniszewska, Justyna</creatorcontrib><creatorcontrib>Ziętala, Michał</creatorcontrib><creatorcontrib>Antolak-Dudka, Anna</creatorcontrib><creatorcontrib>Czujko, Tomasz</creatorcontrib><creatorcontrib>Varin, Robert A</creatorcontrib><creatorcontrib>Paserin, Vlad</creatorcontrib><title>The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample-LENS-fabricated from the ATOMET 28 powder-was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03⁻0.1%. Unexpectedly, the solid sample-LENS-fabricated from the reference, a purely spherical Fe 99.8 powder-exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R² = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations.</description><subject>Additive manufacturing</subject><subject>Atomizing</subject><subject>Cross-sections</subject><subject>Dependence</subject><subject>Feeding</subject><subject>Flow velocity</subject><subject>Inhomogeneity</subject><subject>Lenses</subject><subject>Metal powders</subject><subject>Microtomography</subject><subject>Morphology</subject><subject>Particle size distribution</subject><subject>Porosity</subject><subject>Spherical powders</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVFrFTEQhYMottS--AMk4IsIq5NNsrt5ES6lrYVrFbziY8gmk96U3c012a20v96U1lo7Lxk4H4czOYS8ZvCBcwUfR8MYSOgEf0b2mVJNxZQQzx_te-Qw50sowznravWS7NWq7XgLYp_4zRbparcbgjVziBONnp4OsV8Gk-hPM2OqVnMcww06epaK_i3-dpgy9THRlXNhDldIv5hp8cbOSwrTBe2vqaHr4_PvdIN2O4VfC74iL7wZMh7evwfkx8nx5uhztf56ena0WldWQDNXqu0F9x3yBo3FDpxrZcOcbMGAh7qB3ihmUVimbBF9I1EyrG3nne0NQ35APt357pZ-RGdxmpMZ9C6F0aRrHU3Q_ytT2OqLeKVl-ZG6hmLw7t4gxZI7z3oM2eIwmAnjknUNom6lAHaLvn2CXsYlTeW8QslGSBCNKtT7O8qmmHNC_xCGgb5tUP9rsMBvHsd_QP_2xf8ABPGXGQ</recordid><startdate>20180518</startdate><enddate>20180518</enddate><creator>Durejko, Tomasz</creator><creator>Aniszewska, Justyna</creator><creator>Ziętala, Michał</creator><creator>Antolak-Dudka, Anna</creator><creator>Czujko, Tomasz</creator><creator>Varin, Robert A</creator><creator>Paserin, Vlad</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1610-7446</orcidid><orcidid>https://orcid.org/0000-0001-8032-8863</orcidid><orcidid>https://orcid.org/0000-0002-7065-6385</orcidid><orcidid>https://orcid.org/0000-0002-3278-1265</orcidid></search><sort><creationdate>20180518</creationdate><title>The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique</title><author>Durejko, Tomasz ; Aniszewska, Justyna ; Ziętala, Michał ; Antolak-Dudka, Anna ; Czujko, Tomasz ; Varin, Robert A ; Paserin, Vlad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-97b43f8e36eace80dd7561d570a0f0260ba91ce4c19c0ddf65e51e2c8fdcba1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additive manufacturing</topic><topic>Atomizing</topic><topic>Cross-sections</topic><topic>Dependence</topic><topic>Feeding</topic><topic>Flow velocity</topic><topic>Inhomogeneity</topic><topic>Lenses</topic><topic>Metal powders</topic><topic>Microtomography</topic><topic>Morphology</topic><topic>Particle size distribution</topic><topic>Porosity</topic><topic>Spherical powders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durejko, Tomasz</creatorcontrib><creatorcontrib>Aniszewska, Justyna</creatorcontrib><creatorcontrib>Ziętala, Michał</creatorcontrib><creatorcontrib>Antolak-Dudka, Anna</creatorcontrib><creatorcontrib>Czujko, Tomasz</creatorcontrib><creatorcontrib>Varin, Robert A</creatorcontrib><creatorcontrib>Paserin, Vlad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durejko, Tomasz</au><au>Aniszewska, Justyna</au><au>Ziętala, Michał</au><au>Antolak-Dudka, Anna</au><au>Czujko, Tomasz</au><au>Varin, Robert A</au><au>Paserin, Vlad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2018-05-18</date><risdate>2018</risdate><volume>11</volume><issue>5</issue><spage>843</spage><pages>843-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample-LENS-fabricated from the ATOMET 28 powder-was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03⁻0.1%. Unexpectedly, the solid sample-LENS-fabricated from the reference, a purely spherical Fe 99.8 powder-exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R² = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29783704</pmid><doi>10.3390/ma11050843</doi><orcidid>https://orcid.org/0000-0003-1610-7446</orcidid><orcidid>https://orcid.org/0000-0001-8032-8863</orcidid><orcidid>https://orcid.org/0000-0002-7065-6385</orcidid><orcidid>https://orcid.org/0000-0002-3278-1265</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2018-05, Vol.11 (5), p.843 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5978220 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Additive manufacturing Atomizing Cross-sections Dependence Feeding Flow velocity Inhomogeneity Lenses Metal powders Microtomography Morphology Particle size distribution Porosity Spherical powders |
title | The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Application%20of%20Globular%20Water-Atomized%20Iron%20Powders%20for%20Additive%20Manufacturing%20by%20a%20LENS%20Technique&rft.jtitle=Materials&rft.au=Durejko,%20Tomasz&rft.date=2018-05-18&rft.volume=11&rft.issue=5&rft.spage=843&rft.pages=843-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma11050843&rft_dat=%3Cproquest_pubme%3E2042754010%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056450469&rft_id=info:pmid/29783704&rfr_iscdi=true |