The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique

The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2018-05, Vol.11 (5), p.843
Hauptverfasser: Durejko, Tomasz, Aniszewska, Justyna, Ziętala, Michał, Antolak-Dudka, Anna, Czujko, Tomasz, Varin, Robert A, Paserin, Vlad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 843
container_title Materials
container_volume 11
creator Durejko, Tomasz
Aniszewska, Justyna
Ziętala, Michał
Antolak-Dudka, Anna
Czujko, Tomasz
Varin, Robert A
Paserin, Vlad
description The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample-LENS-fabricated from the ATOMET 28 powder-was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03⁻0.1%. Unexpectedly, the solid sample-LENS-fabricated from the reference, a purely spherical Fe 99.8 powder-exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R² = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations.
doi_str_mv 10.3390/ma11050843
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5978220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042754010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-97b43f8e36eace80dd7561d570a0f0260ba91ce4c19c0ddf65e51e2c8fdcba1e3</originalsourceid><addsrcrecordid>eNpdkVFrFTEQhYMottS--AMk4IsIq5NNsrt5ES6lrYVrFbziY8gmk96U3c012a20v96U1lo7Lxk4H4czOYS8ZvCBcwUfR8MYSOgEf0b2mVJNxZQQzx_te-Qw50sowznravWS7NWq7XgLYp_4zRbparcbgjVziBONnp4OsV8Gk-hPM2OqVnMcww06epaK_i3-dpgy9THRlXNhDldIv5hp8cbOSwrTBe2vqaHr4_PvdIN2O4VfC74iL7wZMh7evwfkx8nx5uhztf56ena0WldWQDNXqu0F9x3yBo3FDpxrZcOcbMGAh7qB3ihmUVimbBF9I1EyrG3nne0NQ35APt357pZ-RGdxmpMZ9C6F0aRrHU3Q_ytT2OqLeKVl-ZG6hmLw7t4gxZI7z3oM2eIwmAnjknUNom6lAHaLvn2CXsYlTeW8QslGSBCNKtT7O8qmmHNC_xCGgb5tUP9rsMBvHsd_QP_2xf8ABPGXGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056450469</pqid></control><display><type>article</type><title>The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Durejko, Tomasz ; Aniszewska, Justyna ; Ziętala, Michał ; Antolak-Dudka, Anna ; Czujko, Tomasz ; Varin, Robert A ; Paserin, Vlad</creator><creatorcontrib>Durejko, Tomasz ; Aniszewska, Justyna ; Ziętala, Michał ; Antolak-Dudka, Anna ; Czujko, Tomasz ; Varin, Robert A ; Paserin, Vlad</creatorcontrib><description>The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample-LENS-fabricated from the ATOMET 28 powder-was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03⁻0.1%. Unexpectedly, the solid sample-LENS-fabricated from the reference, a purely spherical Fe 99.8 powder-exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R² = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma11050843</identifier><identifier>PMID: 29783704</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additive manufacturing ; Atomizing ; Cross-sections ; Dependence ; Feeding ; Flow velocity ; Inhomogeneity ; Lenses ; Metal powders ; Microtomography ; Morphology ; Particle size distribution ; Porosity ; Spherical powders</subject><ispartof>Materials, 2018-05, Vol.11 (5), p.843</ispartof><rights>Copyright MDPI AG 2018</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-97b43f8e36eace80dd7561d570a0f0260ba91ce4c19c0ddf65e51e2c8fdcba1e3</citedby><cites>FETCH-LOGICAL-c406t-97b43f8e36eace80dd7561d570a0f0260ba91ce4c19c0ddf65e51e2c8fdcba1e3</cites><orcidid>0000-0003-1610-7446 ; 0000-0001-8032-8863 ; 0000-0002-7065-6385 ; 0000-0002-3278-1265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978220/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29783704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Durejko, Tomasz</creatorcontrib><creatorcontrib>Aniszewska, Justyna</creatorcontrib><creatorcontrib>Ziętala, Michał</creatorcontrib><creatorcontrib>Antolak-Dudka, Anna</creatorcontrib><creatorcontrib>Czujko, Tomasz</creatorcontrib><creatorcontrib>Varin, Robert A</creatorcontrib><creatorcontrib>Paserin, Vlad</creatorcontrib><title>The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample-LENS-fabricated from the ATOMET 28 powder-was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03⁻0.1%. Unexpectedly, the solid sample-LENS-fabricated from the reference, a purely spherical Fe 99.8 powder-exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R² = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations.</description><subject>Additive manufacturing</subject><subject>Atomizing</subject><subject>Cross-sections</subject><subject>Dependence</subject><subject>Feeding</subject><subject>Flow velocity</subject><subject>Inhomogeneity</subject><subject>Lenses</subject><subject>Metal powders</subject><subject>Microtomography</subject><subject>Morphology</subject><subject>Particle size distribution</subject><subject>Porosity</subject><subject>Spherical powders</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVFrFTEQhYMottS--AMk4IsIq5NNsrt5ES6lrYVrFbziY8gmk96U3c012a20v96U1lo7Lxk4H4czOYS8ZvCBcwUfR8MYSOgEf0b2mVJNxZQQzx_te-Qw50sowznravWS7NWq7XgLYp_4zRbparcbgjVziBONnp4OsV8Gk-hPM2OqVnMcww06epaK_i3-dpgy9THRlXNhDldIv5hp8cbOSwrTBe2vqaHr4_PvdIN2O4VfC74iL7wZMh7evwfkx8nx5uhztf56ena0WldWQDNXqu0F9x3yBo3FDpxrZcOcbMGAh7qB3ihmUVimbBF9I1EyrG3nne0NQ35APt357pZ-RGdxmpMZ9C6F0aRrHU3Q_ytT2OqLeKVl-ZG6hmLw7t4gxZI7z3oM2eIwmAnjknUNom6lAHaLvn2CXsYlTeW8QslGSBCNKtT7O8qmmHNC_xCGgb5tUP9rsMBvHsd_QP_2xf8ABPGXGQ</recordid><startdate>20180518</startdate><enddate>20180518</enddate><creator>Durejko, Tomasz</creator><creator>Aniszewska, Justyna</creator><creator>Ziętala, Michał</creator><creator>Antolak-Dudka, Anna</creator><creator>Czujko, Tomasz</creator><creator>Varin, Robert A</creator><creator>Paserin, Vlad</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1610-7446</orcidid><orcidid>https://orcid.org/0000-0001-8032-8863</orcidid><orcidid>https://orcid.org/0000-0002-7065-6385</orcidid><orcidid>https://orcid.org/0000-0002-3278-1265</orcidid></search><sort><creationdate>20180518</creationdate><title>The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique</title><author>Durejko, Tomasz ; Aniszewska, Justyna ; Ziętala, Michał ; Antolak-Dudka, Anna ; Czujko, Tomasz ; Varin, Robert A ; Paserin, Vlad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-97b43f8e36eace80dd7561d570a0f0260ba91ce4c19c0ddf65e51e2c8fdcba1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additive manufacturing</topic><topic>Atomizing</topic><topic>Cross-sections</topic><topic>Dependence</topic><topic>Feeding</topic><topic>Flow velocity</topic><topic>Inhomogeneity</topic><topic>Lenses</topic><topic>Metal powders</topic><topic>Microtomography</topic><topic>Morphology</topic><topic>Particle size distribution</topic><topic>Porosity</topic><topic>Spherical powders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durejko, Tomasz</creatorcontrib><creatorcontrib>Aniszewska, Justyna</creatorcontrib><creatorcontrib>Ziętala, Michał</creatorcontrib><creatorcontrib>Antolak-Dudka, Anna</creatorcontrib><creatorcontrib>Czujko, Tomasz</creatorcontrib><creatorcontrib>Varin, Robert A</creatorcontrib><creatorcontrib>Paserin, Vlad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durejko, Tomasz</au><au>Aniszewska, Justyna</au><au>Ziętala, Michał</au><au>Antolak-Dudka, Anna</au><au>Czujko, Tomasz</au><au>Varin, Robert A</au><au>Paserin, Vlad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2018-05-18</date><risdate>2018</risdate><volume>11</volume><issue>5</issue><spage>843</spage><pages>843-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The water-atomized ATOMET 28, 1001, 4701, and 4801 powders, manufactured by Rio Tinto Metal Powders, were used for additive manufacturing by a laser engineered net shaping (LENS) technique. Their overall morphology was globular and rounded with a size distribution from about 20 to 200 µm. Only the ATOMET 28 powder was characterized by a strong inhomogeneity of particle size and irregular polyhedral shape of powder particles with sharp edges. The powders were pre-sieved to a size distribution from 40 to 150 µm before LENS processing. One particular sample-LENS-fabricated from the ATOMET 28 powder-was characterized by the largest cross-sectional (2D) porosity of 4.2% and bulk porosity of 3.9%, the latter determined by microtomography measurements. In contrast, the cross-sectional porosities of bulk, solid, nearly cubic LENS-fabricated samples from the other ATOMET powders exhibited very low porosities within the range 0.03⁻0.1%. Unexpectedly, the solid sample-LENS-fabricated from the reference, a purely spherical Fe 99.8 powder-exhibited a porosity of 1.1%, the second largest after that of the pre-sieved, nonspherical ATOMET 28 powder. Vibrations incorporated mechanically into the LENS powder feeding system substantially improved the flow rate vs. feeding rate dependence, making it completely linear with an excellent coefficient of fit, R² = 0.99. In comparison, the reference powder Fe 99.8 always exhibited a linear dependence of the powder flow rate vs. feeding rate, regardless of vibrations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29783704</pmid><doi>10.3390/ma11050843</doi><orcidid>https://orcid.org/0000-0003-1610-7446</orcidid><orcidid>https://orcid.org/0000-0001-8032-8863</orcidid><orcidid>https://orcid.org/0000-0002-7065-6385</orcidid><orcidid>https://orcid.org/0000-0002-3278-1265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2018-05, Vol.11 (5), p.843
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5978220
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Additive manufacturing
Atomizing
Cross-sections
Dependence
Feeding
Flow velocity
Inhomogeneity
Lenses
Metal powders
Microtomography
Morphology
Particle size distribution
Porosity
Spherical powders
title The Application of Globular Water-Atomized Iron Powders for Additive Manufacturing by a LENS Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T19%3A47%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Application%20of%20Globular%20Water-Atomized%20Iron%20Powders%20for%20Additive%20Manufacturing%20by%20a%20LENS%20Technique&rft.jtitle=Materials&rft.au=Durejko,%20Tomasz&rft.date=2018-05-18&rft.volume=11&rft.issue=5&rft.spage=843&rft.pages=843-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma11050843&rft_dat=%3Cproquest_pubme%3E2042754010%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056450469&rft_id=info:pmid/29783704&rfr_iscdi=true