Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model

We consider the risk of adverse drug events caused by antibiotic prescriptions. Antibiotics are the second most common cause of drug related adverse events and one of the most common classes of drugs associated with medical malpractice claims. To cope with this serious issue, physicians rely on guid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2017, Vol.2017, p.1625-1634
Hauptverfasser: Souissi, Souhir Ben, Abed, Mourad, Elhiki, Lahcen, Fortemps, Philippe, Pirlot, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1634
container_issue
container_start_page 1625
container_title AMIA ... Annual Symposium proceedings
container_volume 2017
creator Souissi, Souhir Ben
Abed, Mourad
Elhiki, Lahcen
Fortemps, Philippe
Pirlot, Marc
description We consider the risk of adverse drug events caused by antibiotic prescriptions. Antibiotics are the second most common cause of drug related adverse events and one of the most common classes of drugs associated with medical malpractice claims. To cope with this serious issue, physicians rely on guidelines, especially in the context of hospital prescriptions. Unfortunately such guidelines do not offer sufficient support to solve the problem of adverse events. To cope with these issues our work proposes a clinical decision support system based on expert medical knowledge, which combines semantic technologies with multiple criteria decision models. Our model links and assesses the adequacy of each treatment through the toxicity risk of side effects, in order to provide and explain to physicians a sorted list of possible antibiotics. We illustrate our approach through carefully selected case studies in collaboration with the EpiCURA Hospital Center in Belgium.
format Article
fullrecord <record><control><sourceid>hal_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5977731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03666537v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h215t-ff11af53b1e5c775eba76edc148809b397867ae2dc7dc407e9aa9e2bf105647a3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhosobn78BcmtF4WmaZLmRhj1Y8LGZEzwriRpuh7tktFk0_17O6aiXp3DOe_zHs57FA0xpSLOEs6O-15kaUwFfxlEZ96_JknGac5Oo0EqcpqlhAyj7dxUGw12iUJj0MJ9gIawQ3PwbwgsGtkAClwAjZ4643UH6wDOeqR2qHArBXaPzmxwrVuC8egdQoMkmm7aAOvWoKKDYDqQ6NZo8D2Kpq4y7UV0UsvWm8uveh49398tinE8mT08FqNJ3KSYhriuMZY1JQobqjmnRknOTKVxlueJUETwnHFp0krzSvdPGyGlMKmqcUJZxiU5j24OvuuNWvWgsaGTbbnuYCW7XekklH83Fppy6bZlnxrnBPcG1weD5h82Hk3K_SwhjDFK-Havvfp97Ef-nTb5BPJgf-s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Souissi, Souhir Ben ; Abed, Mourad ; Elhiki, Lahcen ; Fortemps, Philippe ; Pirlot, Marc</creator><creatorcontrib>Souissi, Souhir Ben ; Abed, Mourad ; Elhiki, Lahcen ; Fortemps, Philippe ; Pirlot, Marc</creatorcontrib><description>We consider the risk of adverse drug events caused by antibiotic prescriptions. Antibiotics are the second most common cause of drug related adverse events and one of the most common classes of drugs associated with medical malpractice claims. To cope with this serious issue, physicians rely on guidelines, especially in the context of hospital prescriptions. Unfortunately such guidelines do not offer sufficient support to solve the problem of adverse events. To cope with these issues our work proposes a clinical decision support system based on expert medical knowledge, which combines semantic technologies with multiple criteria decision models. Our model links and assesses the adequacy of each treatment through the toxicity risk of side effects, in order to provide and explain to physicians a sorted list of possible antibiotics. We illustrate our approach through carefully selected case studies in collaboration with the EpiCURA Hospital Center in Belgium.</description><identifier>ISSN: 1942-597X</identifier><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 29854233</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Engineering Sciences</subject><ispartof>AMIA ... Annual Symposium proceedings, 2017, Vol.2017, p.1625-1634</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 AMIA - All rights reserved. 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9723-7714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977731/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977731/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4022,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29854233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://uphf.hal.science/hal-03666537$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Souissi, Souhir Ben</creatorcontrib><creatorcontrib>Abed, Mourad</creatorcontrib><creatorcontrib>Elhiki, Lahcen</creatorcontrib><creatorcontrib>Fortemps, Philippe</creatorcontrib><creatorcontrib>Pirlot, Marc</creatorcontrib><title>Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>We consider the risk of adverse drug events caused by antibiotic prescriptions. Antibiotics are the second most common cause of drug related adverse events and one of the most common classes of drugs associated with medical malpractice claims. To cope with this serious issue, physicians rely on guidelines, especially in the context of hospital prescriptions. Unfortunately such guidelines do not offer sufficient support to solve the problem of adverse events. To cope with these issues our work proposes a clinical decision support system based on expert medical knowledge, which combines semantic technologies with multiple criteria decision models. Our model links and assesses the adequacy of each treatment through the toxicity risk of side effects, in order to provide and explain to physicians a sorted list of possible antibiotics. We illustrate our approach through carefully selected case studies in collaboration with the EpiCURA Hospital Center in Belgium.</description><subject>Engineering Sciences</subject><issn>1942-597X</issn><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhosobn78BcmtF4WmaZLmRhj1Y8LGZEzwriRpuh7tktFk0_17O6aiXp3DOe_zHs57FA0xpSLOEs6O-15kaUwFfxlEZ96_JknGac5Oo0EqcpqlhAyj7dxUGw12iUJj0MJ9gIawQ3PwbwgsGtkAClwAjZ4643UH6wDOeqR2qHArBXaPzmxwrVuC8egdQoMkmm7aAOvWoKKDYDqQ6NZo8D2Kpq4y7UV0UsvWm8uveh49398tinE8mT08FqNJ3KSYhriuMZY1JQobqjmnRknOTKVxlueJUETwnHFp0krzSvdPGyGlMKmqcUJZxiU5j24OvuuNWvWgsaGTbbnuYCW7XekklH83Fppy6bZlnxrnBPcG1weD5h82Hk3K_SwhjDFK-Havvfp97Ef-nTb5BPJgf-s</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Souissi, Souhir Ben</creator><creator>Abed, Mourad</creator><creator>Elhiki, Lahcen</creator><creator>Fortemps, Philippe</creator><creator>Pirlot, Marc</creator><general>American Medical Informatics Association</general><scope>NPM</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9723-7714</orcidid></search><sort><creationdate>2017</creationdate><title>Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model</title><author>Souissi, Souhir Ben ; Abed, Mourad ; Elhiki, Lahcen ; Fortemps, Philippe ; Pirlot, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h215t-ff11af53b1e5c775eba76edc148809b397867ae2dc7dc407e9aa9e2bf105647a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souissi, Souhir Ben</creatorcontrib><creatorcontrib>Abed, Mourad</creatorcontrib><creatorcontrib>Elhiki, Lahcen</creatorcontrib><creatorcontrib>Fortemps, Philippe</creatorcontrib><creatorcontrib>Pirlot, Marc</creatorcontrib><collection>PubMed</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souissi, Souhir Ben</au><au>Abed, Mourad</au><au>Elhiki, Lahcen</au><au>Fortemps, Philippe</au><au>Pirlot, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2017</date><risdate>2017</risdate><volume>2017</volume><spage>1625</spage><epage>1634</epage><pages>1625-1634</pages><issn>1942-597X</issn><eissn>1559-4076</eissn><abstract>We consider the risk of adverse drug events caused by antibiotic prescriptions. Antibiotics are the second most common cause of drug related adverse events and one of the most common classes of drugs associated with medical malpractice claims. To cope with this serious issue, physicians rely on guidelines, especially in the context of hospital prescriptions. Unfortunately such guidelines do not offer sufficient support to solve the problem of adverse events. To cope with these issues our work proposes a clinical decision support system based on expert medical knowledge, which combines semantic technologies with multiple criteria decision models. Our model links and assesses the adequacy of each treatment through the toxicity risk of side effects, in order to provide and explain to physicians a sorted list of possible antibiotics. We illustrate our approach through carefully selected case studies in collaboration with the EpiCURA Hospital Center in Belgium.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>29854233</pmid><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9723-7714</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1942-597X
ispartof AMIA ... Annual Symposium proceedings, 2017, Vol.2017, p.1625-1634
issn 1942-597X
1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5977731
source EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Engineering Sciences
title Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20the%20Toxicity%20Risk%20in%20Antibiotic%20Prescriptions%20by%20Combining%20Ontologies%20with%20a%20Multiple%20Criteria%20Decision%20Model&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Souissi,%20Souhir%20Ben&rft.date=2017&rft.volume=2017&rft.spage=1625&rft.epage=1634&rft.pages=1625-1634&rft.issn=1942-597X&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Chal_pubme%3Eoai_HAL_hal_03666537v1%3C/hal_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29854233&rfr_iscdi=true