Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model
We consider the risk of adverse drug events caused by antibiotic prescriptions. Antibiotics are the second most common cause of drug related adverse events and one of the most common classes of drugs associated with medical malpractice claims. To cope with this serious issue, physicians rely on guid...
Gespeichert in:
Veröffentlicht in: | AMIA ... Annual Symposium proceedings 2017, Vol.2017, p.1625-1634 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1634 |
---|---|
container_issue | |
container_start_page | 1625 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | 2017 |
creator | Souissi, Souhir Ben Abed, Mourad Elhiki, Lahcen Fortemps, Philippe Pirlot, Marc |
description | We consider the risk of adverse drug events caused by antibiotic prescriptions. Antibiotics are the second most common cause of drug related adverse events and one of the most common classes of drugs associated with medical malpractice claims. To cope with this serious issue, physicians rely on guidelines, especially in the context of hospital prescriptions. Unfortunately such guidelines do not offer sufficient support to solve the problem of adverse events. To cope with these issues our work proposes a clinical decision support system based on expert medical knowledge, which combines semantic technologies with multiple criteria decision models. Our model links and assesses the adequacy of each treatment through the toxicity risk of side effects, in order to provide and explain to physicians a sorted list of possible antibiotics. We illustrate our approach through carefully selected case studies in collaboration with the EpiCURA Hospital Center in Belgium. |
format | Article |
fullrecord | <record><control><sourceid>hal_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5977731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03666537v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h215t-ff11af53b1e5c775eba76edc148809b397867ae2dc7dc407e9aa9e2bf105647a3</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhosobn78BcmtF4WmaZLmRhj1Y8LGZEzwriRpuh7tktFk0_17O6aiXp3DOe_zHs57FA0xpSLOEs6O-15kaUwFfxlEZ96_JknGac5Oo0EqcpqlhAyj7dxUGw12iUJj0MJ9gIawQ3PwbwgsGtkAClwAjZ4643UH6wDOeqR2qHArBXaPzmxwrVuC8egdQoMkmm7aAOvWoKKDYDqQ6NZo8D2Kpq4y7UV0UsvWm8uveh49398tinE8mT08FqNJ3KSYhriuMZY1JQobqjmnRknOTKVxlueJUETwnHFp0krzSvdPGyGlMKmqcUJZxiU5j24OvuuNWvWgsaGTbbnuYCW7XekklH83Fppy6bZlnxrnBPcG1weD5h82Hk3K_SwhjDFK-Havvfp97Ef-nTb5BPJgf-s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Souissi, Souhir Ben ; Abed, Mourad ; Elhiki, Lahcen ; Fortemps, Philippe ; Pirlot, Marc</creator><creatorcontrib>Souissi, Souhir Ben ; Abed, Mourad ; Elhiki, Lahcen ; Fortemps, Philippe ; Pirlot, Marc</creatorcontrib><description>We consider the risk of adverse drug events caused by antibiotic prescriptions. Antibiotics are the second most common cause of drug related adverse events and one of the most common classes of drugs associated with medical malpractice claims. To cope with this serious issue, physicians rely on guidelines, especially in the context of hospital prescriptions. Unfortunately such guidelines do not offer sufficient support to solve the problem of adverse events. To cope with these issues our work proposes a clinical decision support system based on expert medical knowledge, which combines semantic technologies with multiple criteria decision models. Our model links and assesses the adequacy of each treatment through the toxicity risk of side effects, in order to provide and explain to physicians a sorted list of possible antibiotics. We illustrate our approach through carefully selected case studies in collaboration with the EpiCURA Hospital Center in Belgium.</description><identifier>ISSN: 1942-597X</identifier><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 29854233</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Engineering Sciences</subject><ispartof>AMIA ... Annual Symposium proceedings, 2017, Vol.2017, p.1625-1634</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017 AMIA - All rights reserved. 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9723-7714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977731/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977731/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4022,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29854233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://uphf.hal.science/hal-03666537$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Souissi, Souhir Ben</creatorcontrib><creatorcontrib>Abed, Mourad</creatorcontrib><creatorcontrib>Elhiki, Lahcen</creatorcontrib><creatorcontrib>Fortemps, Philippe</creatorcontrib><creatorcontrib>Pirlot, Marc</creatorcontrib><title>Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>We consider the risk of adverse drug events caused by antibiotic prescriptions. Antibiotics are the second most common cause of drug related adverse events and one of the most common classes of drugs associated with medical malpractice claims. To cope with this serious issue, physicians rely on guidelines, especially in the context of hospital prescriptions. Unfortunately such guidelines do not offer sufficient support to solve the problem of adverse events. To cope with these issues our work proposes a clinical decision support system based on expert medical knowledge, which combines semantic technologies with multiple criteria decision models. Our model links and assesses the adequacy of each treatment through the toxicity risk of side effects, in order to provide and explain to physicians a sorted list of possible antibiotics. We illustrate our approach through carefully selected case studies in collaboration with the EpiCURA Hospital Center in Belgium.</description><subject>Engineering Sciences</subject><issn>1942-597X</issn><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhosobn78BcmtF4WmaZLmRhj1Y8LGZEzwriRpuh7tktFk0_17O6aiXp3DOe_zHs57FA0xpSLOEs6O-15kaUwFfxlEZ96_JknGac5Oo0EqcpqlhAyj7dxUGw12iUJj0MJ9gIawQ3PwbwgsGtkAClwAjZ4643UH6wDOeqR2qHArBXaPzmxwrVuC8egdQoMkmm7aAOvWoKKDYDqQ6NZo8D2Kpq4y7UV0UsvWm8uveh49398tinE8mT08FqNJ3KSYhriuMZY1JQobqjmnRknOTKVxlueJUETwnHFp0krzSvdPGyGlMKmqcUJZxiU5j24OvuuNWvWgsaGTbbnuYCW7XekklH83Fppy6bZlnxrnBPcG1weD5h82Hk3K_SwhjDFK-Havvfp97Ef-nTb5BPJgf-s</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Souissi, Souhir Ben</creator><creator>Abed, Mourad</creator><creator>Elhiki, Lahcen</creator><creator>Fortemps, Philippe</creator><creator>Pirlot, Marc</creator><general>American Medical Informatics Association</general><scope>NPM</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9723-7714</orcidid></search><sort><creationdate>2017</creationdate><title>Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model</title><author>Souissi, Souhir Ben ; Abed, Mourad ; Elhiki, Lahcen ; Fortemps, Philippe ; Pirlot, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h215t-ff11af53b1e5c775eba76edc148809b397867ae2dc7dc407e9aa9e2bf105647a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souissi, Souhir Ben</creatorcontrib><creatorcontrib>Abed, Mourad</creatorcontrib><creatorcontrib>Elhiki, Lahcen</creatorcontrib><creatorcontrib>Fortemps, Philippe</creatorcontrib><creatorcontrib>Pirlot, Marc</creatorcontrib><collection>PubMed</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souissi, Souhir Ben</au><au>Abed, Mourad</au><au>Elhiki, Lahcen</au><au>Fortemps, Philippe</au><au>Pirlot, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2017</date><risdate>2017</risdate><volume>2017</volume><spage>1625</spage><epage>1634</epage><pages>1625-1634</pages><issn>1942-597X</issn><eissn>1559-4076</eissn><abstract>We consider the risk of adverse drug events caused by antibiotic prescriptions. Antibiotics are the second most common cause of drug related adverse events and one of the most common classes of drugs associated with medical malpractice claims. To cope with this serious issue, physicians rely on guidelines, especially in the context of hospital prescriptions. Unfortunately such guidelines do not offer sufficient support to solve the problem of adverse events. To cope with these issues our work proposes a clinical decision support system based on expert medical knowledge, which combines semantic technologies with multiple criteria decision models. Our model links and assesses the adequacy of each treatment through the toxicity risk of side effects, in order to provide and explain to physicians a sorted list of possible antibiotics. We illustrate our approach through carefully selected case studies in collaboration with the EpiCURA Hospital Center in Belgium.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>29854233</pmid><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9723-7714</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-597X |
ispartof | AMIA ... Annual Symposium proceedings, 2017, Vol.2017, p.1625-1634 |
issn | 1942-597X 1559-4076 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5977731 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Engineering Sciences |
title | Reducing the Toxicity Risk in Antibiotic Prescriptions by Combining Ontologies with a Multiple Criteria Decision Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20the%20Toxicity%20Risk%20in%20Antibiotic%20Prescriptions%20by%20Combining%20Ontologies%20with%20a%20Multiple%20Criteria%20Decision%20Model&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Souissi,%20Souhir%20Ben&rft.date=2017&rft.volume=2017&rft.spage=1625&rft.epage=1634&rft.pages=1625-1634&rft.issn=1942-597X&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Chal_pubme%3Eoai_HAL_hal_03666537v1%3C/hal_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29854233&rfr_iscdi=true |