The Dependence of Machine Learning on Electronic Medical Record Quality
There is growing interest in applying machine learning methods to Electronic Medical Records (EMR). Across different institutions, however, EMR quality can vary widely. This work investigated the impact of this disparity on the performance of three advanced machine learning algorithms: logistic regr...
Gespeichert in:
Veröffentlicht in: | AMIA ... Annual Symposium proceedings 2017, Vol.2017, p.883-891 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 891 |
---|---|
container_issue | |
container_start_page | 883 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | 2017 |
creator | Ho, Long V Ledbetter, David Aczon, Melissa Wetzel, Randall |
description | There is growing interest in applying machine learning methods to Electronic Medical Records (EMR). Across different institutions, however, EMR quality can vary widely. This work investigated the impact of this disparity on the performance of three advanced machine learning algorithms: logistic regression, multilayer perceptron, and recurrent neural network. The EMR disparity was emulated using different permutations of the EMR collected at Children's Hospital Los Angeles (CHLA) Pediatric Intensive Care Unit (PICU) and Cardiothoracic Intensive Care Unit (CTICU). The algorithms were trained using patients from the PICU to predict in-ICU mortality for patients on a held out set of PICU and CTICU patients. The disparate patient populations between the PICU and CTICU provide an estimate of generalization errors across different ICUs. We quantified and evaluated the generalization of these algorithms on varying EMR size, input types, and fidelity of data. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5977633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049552755</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-d9da0c83d14ad343e51b270615ac1955722425a7bde2e5f6a1d743eecb714e1d3</originalsourceid><addsrcrecordid>eNpVkE1LAzEYhIMgtlb_guToZWHztdm9CFJrFSqi1HN4N3nbRtJk3Q-h_94Fq-hpDjM8M8wJmTKlqkzmupiQ8657z3OpVVmckQmvSiVHd0qW6x3SO2wwOowWadrQJ7A7H5GuENro45amSBcBbd-m6C19QuctBPqKNrWOvgwQfH-4IKcbCB1eHnVG3u4X6_lDtnpePs5vV1nDStZnrnKQ21I4JsEJKVCxmuu8YAosq5TSnEuuQNcOOapNAczpMYW21kwic2JGbr65zVDv0VmMfQvBNK3fQ3swCbz570S_M9v0aVSldSHECLg-Atr0MWDXm73vLIYAEdPQGZ7LcQfXSo3Rq79dvyU_74kvcedrOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049552755</pqid></control><display><type>article</type><title>The Dependence of Machine Learning on Electronic Medical Record Quality</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Ho, Long V ; Ledbetter, David ; Aczon, Melissa ; Wetzel, Randall</creator><creatorcontrib>Ho, Long V ; Ledbetter, David ; Aczon, Melissa ; Wetzel, Randall</creatorcontrib><description>There is growing interest in applying machine learning methods to Electronic Medical Records (EMR). Across different institutions, however, EMR quality can vary widely. This work investigated the impact of this disparity on the performance of three advanced machine learning algorithms: logistic regression, multilayer perceptron, and recurrent neural network. The EMR disparity was emulated using different permutations of the EMR collected at Children's Hospital Los Angeles (CHLA) Pediatric Intensive Care Unit (PICU) and Cardiothoracic Intensive Care Unit (CTICU). The algorithms were trained using patients from the PICU to predict in-ICU mortality for patients on a held out set of PICU and CTICU patients. The disparate patient populations between the PICU and CTICU provide an estimate of generalization errors across different ICUs. We quantified and evaluated the generalization of these algorithms on varying EMR size, input types, and fidelity of data.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 29854155</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><ispartof>AMIA ... Annual Symposium proceedings, 2017, Vol.2017, p.883-891</ispartof><rights>2017 AMIA - All rights reserved. 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977633/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977633/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29854155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, Long V</creatorcontrib><creatorcontrib>Ledbetter, David</creatorcontrib><creatorcontrib>Aczon, Melissa</creatorcontrib><creatorcontrib>Wetzel, Randall</creatorcontrib><title>The Dependence of Machine Learning on Electronic Medical Record Quality</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>There is growing interest in applying machine learning methods to Electronic Medical Records (EMR). Across different institutions, however, EMR quality can vary widely. This work investigated the impact of this disparity on the performance of three advanced machine learning algorithms: logistic regression, multilayer perceptron, and recurrent neural network. The EMR disparity was emulated using different permutations of the EMR collected at Children's Hospital Los Angeles (CHLA) Pediatric Intensive Care Unit (PICU) and Cardiothoracic Intensive Care Unit (CTICU). The algorithms were trained using patients from the PICU to predict in-ICU mortality for patients on a held out set of PICU and CTICU patients. The disparate patient populations between the PICU and CTICU provide an estimate of generalization errors across different ICUs. We quantified and evaluated the generalization of these algorithms on varying EMR size, input types, and fidelity of data.</description><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEYhIMgtlb_guToZWHztdm9CFJrFSqi1HN4N3nbRtJk3Q-h_94Fq-hpDjM8M8wJmTKlqkzmupiQ8657z3OpVVmckQmvSiVHd0qW6x3SO2wwOowWadrQJ7A7H5GuENro45amSBcBbd-m6C19QuctBPqKNrWOvgwQfH-4IKcbCB1eHnVG3u4X6_lDtnpePs5vV1nDStZnrnKQ21I4JsEJKVCxmuu8YAosq5TSnEuuQNcOOapNAczpMYW21kwic2JGbr65zVDv0VmMfQvBNK3fQ3swCbz570S_M9v0aVSldSHECLg-Atr0MWDXm73vLIYAEdPQGZ7LcQfXSo3Rq79dvyU_74kvcedrOA</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Ho, Long V</creator><creator>Ledbetter, David</creator><creator>Aczon, Melissa</creator><creator>Wetzel, Randall</creator><general>American Medical Informatics Association</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2017</creationdate><title>The Dependence of Machine Learning on Electronic Medical Record Quality</title><author>Ho, Long V ; Ledbetter, David ; Aczon, Melissa ; Wetzel, Randall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-d9da0c83d14ad343e51b270615ac1955722425a7bde2e5f6a1d743eecb714e1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Long V</creatorcontrib><creatorcontrib>Ledbetter, David</creatorcontrib><creatorcontrib>Aczon, Melissa</creatorcontrib><creatorcontrib>Wetzel, Randall</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Long V</au><au>Ledbetter, David</au><au>Aczon, Melissa</au><au>Wetzel, Randall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dependence of Machine Learning on Electronic Medical Record Quality</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2017</date><risdate>2017</risdate><volume>2017</volume><spage>883</spage><epage>891</epage><pages>883-891</pages><eissn>1559-4076</eissn><abstract>There is growing interest in applying machine learning methods to Electronic Medical Records (EMR). Across different institutions, however, EMR quality can vary widely. This work investigated the impact of this disparity on the performance of three advanced machine learning algorithms: logistic regression, multilayer perceptron, and recurrent neural network. The EMR disparity was emulated using different permutations of the EMR collected at Children's Hospital Los Angeles (CHLA) Pediatric Intensive Care Unit (PICU) and Cardiothoracic Intensive Care Unit (CTICU). The algorithms were trained using patients from the PICU to predict in-ICU mortality for patients on a held out set of PICU and CTICU patients. The disparate patient populations between the PICU and CTICU provide an estimate of generalization errors across different ICUs. We quantified and evaluated the generalization of these algorithms on varying EMR size, input types, and fidelity of data.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>29854155</pmid><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1559-4076 |
ispartof | AMIA ... Annual Symposium proceedings, 2017, Vol.2017, p.883-891 |
issn | 1559-4076 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5977633 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
title | The Dependence of Machine Learning on Electronic Medical Record Quality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dependence%20of%20Machine%20Learning%20on%20Electronic%20Medical%20Record%20Quality&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Ho,%20Long%20V&rft.date=2017&rft.volume=2017&rft.spage=883&rft.epage=891&rft.pages=883-891&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2049552755%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049552755&rft_id=info:pmid/29854155&rfr_iscdi=true |