Phospholipid homeostasis, membrane tenacity and survival of Mtb in lipid rich conditions is determined by MmpL11 function

The mycobacterial cell wall is a chemically complex array of molecular entities that dictate the pathogenesis of Mycobacterium tuberculosis . Biosynthesis and maintenance of this dynamic entity in mycobacterial physiology is still poorly understood. Here we demonstrate a requirement for M. tuberculo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-05, Vol.8 (1), p.8317-14, Article 8317
Hauptverfasser: Bothra, Ankur, Arumugam, Prabhakar, Panchal, Vipul, Menon, Dilip, Srivastava, Sonali, Shankaran, Deepthi, Nandy, Ananya, Jaisinghani, Neetika, Singh, Archana, Gokhale, Rajesh S., Gandotra, Sheetal, Rao, Vivek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 8317
container_title Scientific reports
container_volume 8
creator Bothra, Ankur
Arumugam, Prabhakar
Panchal, Vipul
Menon, Dilip
Srivastava, Sonali
Shankaran, Deepthi
Nandy, Ananya
Jaisinghani, Neetika
Singh, Archana
Gokhale, Rajesh S.
Gandotra, Sheetal
Rao, Vivek
description The mycobacterial cell wall is a chemically complex array of molecular entities that dictate the pathogenesis of Mycobacterium tuberculosis . Biosynthesis and maintenance of this dynamic entity in mycobacterial physiology is still poorly understood. Here we demonstrate a requirement for M. tuberculosis MmpL11 in the maintenance of the cell wall architecture and stability in response to surface stress. In the presence of a detergent like Tyloxapol, a mmpL11 deletion mutant suffered from a severe growth attenuation as a result of altered membrane polarity, permeability and severe architectural damages. This mutant failed to tolerate permissible concentrations of cis -fatty acids suggesting its increased sensitivity to surface stress, evident as smaller colonies of the mutant outgrown from lipid rich macrophage cultures. Additionally, loss of MmpL11 led to an altered cellular fatty acid flux in the mutant: reduced incorporation into membrane cardiolipin was associated with an increased flux into the cellular triglyceride pool. This increase in storage lipids like triacyl glycerol (TAG) was associated with the altered metabolic state of higher dormancy-associated gene expression and decreased sensitivity to frontline TB drugs. This study provides a detailed mechanistic insight into the function of mmpL11 in stress adaptation of mycobacteria.
doi_str_mv 10.1038/s41598-018-26710-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5974182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047252889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-65041311fe46d3301c1578802f9c0055760cffc3fc423450b3ca242daea127993</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2Kb2D7gwJG5cOMrnDGxMTFM_ktvoQteEYaBDMwMjMDe5_fVynVqrC9lAcp7zHt7zAvAcozcYUfE2M8ylaBAWDWk7jJrbR-CUIMYbQgl5_OB9As5zvkH1cCIZlk_BCZGCMY74KTh8HWNexjj5xQ9wjLONuejs82s427lPOlhYbNDGlwPUYYB5TXu_1xOMDl6VHvoAt97kzQhNDIMvPoYMfYaDLTbNPtgB9gd4NS87jKFbgzkSz8ATp6dsz-_uM_D9w-W3i0_N7svHzxfvd43hGJem5YhhirGzrB0oRdhg3gmBiJOmOuJdi4xzhjrDCK2eemo0YWTQVmPSSUnPwLtNd1n72Q7GhpL0pJbkZ50OKmqv_q4EP6rruFdcdgwLUgVe3Qmk-GO1uajZZ2Onqe4mrlnVRXeEEyGOs17-g97ENYVq70i1XKKOoUqRjTIp5pysu_8MRuoYrtrCVTVc9StcdVubXjy0cd_yO8oK0A3ItRSubfoz-z-yPwGWtbEj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046590740</pqid></control><display><type>article</type><title>Phospholipid homeostasis, membrane tenacity and survival of Mtb in lipid rich conditions is determined by MmpL11 function</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Bothra, Ankur ; Arumugam, Prabhakar ; Panchal, Vipul ; Menon, Dilip ; Srivastava, Sonali ; Shankaran, Deepthi ; Nandy, Ananya ; Jaisinghani, Neetika ; Singh, Archana ; Gokhale, Rajesh S. ; Gandotra, Sheetal ; Rao, Vivek</creator><creatorcontrib>Bothra, Ankur ; Arumugam, Prabhakar ; Panchal, Vipul ; Menon, Dilip ; Srivastava, Sonali ; Shankaran, Deepthi ; Nandy, Ananya ; Jaisinghani, Neetika ; Singh, Archana ; Gokhale, Rajesh S. ; Gandotra, Sheetal ; Rao, Vivek</creatorcontrib><description>The mycobacterial cell wall is a chemically complex array of molecular entities that dictate the pathogenesis of Mycobacterium tuberculosis . Biosynthesis and maintenance of this dynamic entity in mycobacterial physiology is still poorly understood. Here we demonstrate a requirement for M. tuberculosis MmpL11 in the maintenance of the cell wall architecture and stability in response to surface stress. In the presence of a detergent like Tyloxapol, a mmpL11 deletion mutant suffered from a severe growth attenuation as a result of altered membrane polarity, permeability and severe architectural damages. This mutant failed to tolerate permissible concentrations of cis -fatty acids suggesting its increased sensitivity to surface stress, evident as smaller colonies of the mutant outgrown from lipid rich macrophage cultures. Additionally, loss of MmpL11 led to an altered cellular fatty acid flux in the mutant: reduced incorporation into membrane cardiolipin was associated with an increased flux into the cellular triglyceride pool. This increase in storage lipids like triacyl glycerol (TAG) was associated with the altered metabolic state of higher dormancy-associated gene expression and decreased sensitivity to frontline TB drugs. This study provides a detailed mechanistic insight into the function of mmpL11 in stress adaptation of mycobacteria.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-26710-z</identifier><identifier>PMID: 29844505</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/31 ; 14/34 ; 14/35 ; 14/63 ; 38/39 ; 38/77 ; 631/326/421 ; 64/60 ; 692/420/254 ; Bacterial Proteins - metabolism ; Biosynthesis ; Cardiolipin ; Cell Membrane - metabolism ; Cell walls ; Clonal deletion ; Deletion mutant ; Dormancy ; Fatty acids ; Fatty Acids - metabolism ; Gene expression ; Glycerol ; Homeostasis ; Humanities and Social Sciences ; Lipid metabolism ; Lipids ; Macrophages ; Membrane permeability ; multidisciplinary ; Mycobacterium tuberculosis - metabolism ; Phospholipids ; Phospholipids - metabolism ; Polarity ; Science ; Science (multidisciplinary) ; Tuberculosis</subject><ispartof>Scientific reports, 2018-05, Vol.8 (1), p.8317-14, Article 8317</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-65041311fe46d3301c1578802f9c0055760cffc3fc423450b3ca242daea127993</citedby><cites>FETCH-LOGICAL-c511t-65041311fe46d3301c1578802f9c0055760cffc3fc423450b3ca242daea127993</cites><orcidid>0000-0001-8646-6634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974182/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974182/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29844505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bothra, Ankur</creatorcontrib><creatorcontrib>Arumugam, Prabhakar</creatorcontrib><creatorcontrib>Panchal, Vipul</creatorcontrib><creatorcontrib>Menon, Dilip</creatorcontrib><creatorcontrib>Srivastava, Sonali</creatorcontrib><creatorcontrib>Shankaran, Deepthi</creatorcontrib><creatorcontrib>Nandy, Ananya</creatorcontrib><creatorcontrib>Jaisinghani, Neetika</creatorcontrib><creatorcontrib>Singh, Archana</creatorcontrib><creatorcontrib>Gokhale, Rajesh S.</creatorcontrib><creatorcontrib>Gandotra, Sheetal</creatorcontrib><creatorcontrib>Rao, Vivek</creatorcontrib><title>Phospholipid homeostasis, membrane tenacity and survival of Mtb in lipid rich conditions is determined by MmpL11 function</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The mycobacterial cell wall is a chemically complex array of molecular entities that dictate the pathogenesis of Mycobacterium tuberculosis . Biosynthesis and maintenance of this dynamic entity in mycobacterial physiology is still poorly understood. Here we demonstrate a requirement for M. tuberculosis MmpL11 in the maintenance of the cell wall architecture and stability in response to surface stress. In the presence of a detergent like Tyloxapol, a mmpL11 deletion mutant suffered from a severe growth attenuation as a result of altered membrane polarity, permeability and severe architectural damages. This mutant failed to tolerate permissible concentrations of cis -fatty acids suggesting its increased sensitivity to surface stress, evident as smaller colonies of the mutant outgrown from lipid rich macrophage cultures. Additionally, loss of MmpL11 led to an altered cellular fatty acid flux in the mutant: reduced incorporation into membrane cardiolipin was associated with an increased flux into the cellular triglyceride pool. This increase in storage lipids like triacyl glycerol (TAG) was associated with the altered metabolic state of higher dormancy-associated gene expression and decreased sensitivity to frontline TB drugs. This study provides a detailed mechanistic insight into the function of mmpL11 in stress adaptation of mycobacteria.</description><subject>13/106</subject><subject>13/31</subject><subject>14/34</subject><subject>14/35</subject><subject>14/63</subject><subject>38/39</subject><subject>38/77</subject><subject>631/326/421</subject><subject>64/60</subject><subject>692/420/254</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biosynthesis</subject><subject>Cardiolipin</subject><subject>Cell Membrane - metabolism</subject><subject>Cell walls</subject><subject>Clonal deletion</subject><subject>Deletion mutant</subject><subject>Dormancy</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Gene expression</subject><subject>Glycerol</subject><subject>Homeostasis</subject><subject>Humanities and Social Sciences</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Macrophages</subject><subject>Membrane permeability</subject><subject>multidisciplinary</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Phospholipids</subject><subject>Phospholipids - metabolism</subject><subject>Polarity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Tuberculosis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1vFSEUhonR2Kb2D7gwJG5cOMrnDGxMTFM_ktvoQteEYaBDMwMjMDe5_fVynVqrC9lAcp7zHt7zAvAcozcYUfE2M8ylaBAWDWk7jJrbR-CUIMYbQgl5_OB9As5zvkH1cCIZlk_BCZGCMY74KTh8HWNexjj5xQ9wjLONuejs82s427lPOlhYbNDGlwPUYYB5TXu_1xOMDl6VHvoAt97kzQhNDIMvPoYMfYaDLTbNPtgB9gd4NS87jKFbgzkSz8ATp6dsz-_uM_D9w-W3i0_N7svHzxfvd43hGJem5YhhirGzrB0oRdhg3gmBiJOmOuJdi4xzhjrDCK2eemo0YWTQVmPSSUnPwLtNd1n72Q7GhpL0pJbkZ50OKmqv_q4EP6rruFdcdgwLUgVe3Qmk-GO1uajZZ2Onqe4mrlnVRXeEEyGOs17-g97ENYVq70i1XKKOoUqRjTIp5pysu_8MRuoYrtrCVTVc9StcdVubXjy0cd_yO8oK0A3ItRSubfoz-z-yPwGWtbEj</recordid><startdate>20180529</startdate><enddate>20180529</enddate><creator>Bothra, Ankur</creator><creator>Arumugam, Prabhakar</creator><creator>Panchal, Vipul</creator><creator>Menon, Dilip</creator><creator>Srivastava, Sonali</creator><creator>Shankaran, Deepthi</creator><creator>Nandy, Ananya</creator><creator>Jaisinghani, Neetika</creator><creator>Singh, Archana</creator><creator>Gokhale, Rajesh S.</creator><creator>Gandotra, Sheetal</creator><creator>Rao, Vivek</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8646-6634</orcidid></search><sort><creationdate>20180529</creationdate><title>Phospholipid homeostasis, membrane tenacity and survival of Mtb in lipid rich conditions is determined by MmpL11 function</title><author>Bothra, Ankur ; Arumugam, Prabhakar ; Panchal, Vipul ; Menon, Dilip ; Srivastava, Sonali ; Shankaran, Deepthi ; Nandy, Ananya ; Jaisinghani, Neetika ; Singh, Archana ; Gokhale, Rajesh S. ; Gandotra, Sheetal ; Rao, Vivek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-65041311fe46d3301c1578802f9c0055760cffc3fc423450b3ca242daea127993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/106</topic><topic>13/31</topic><topic>14/34</topic><topic>14/35</topic><topic>14/63</topic><topic>38/39</topic><topic>38/77</topic><topic>631/326/421</topic><topic>64/60</topic><topic>692/420/254</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biosynthesis</topic><topic>Cardiolipin</topic><topic>Cell Membrane - metabolism</topic><topic>Cell walls</topic><topic>Clonal deletion</topic><topic>Deletion mutant</topic><topic>Dormancy</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Gene expression</topic><topic>Glycerol</topic><topic>Homeostasis</topic><topic>Humanities and Social Sciences</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Macrophages</topic><topic>Membrane permeability</topic><topic>multidisciplinary</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Phospholipids</topic><topic>Phospholipids - metabolism</topic><topic>Polarity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bothra, Ankur</creatorcontrib><creatorcontrib>Arumugam, Prabhakar</creatorcontrib><creatorcontrib>Panchal, Vipul</creatorcontrib><creatorcontrib>Menon, Dilip</creatorcontrib><creatorcontrib>Srivastava, Sonali</creatorcontrib><creatorcontrib>Shankaran, Deepthi</creatorcontrib><creatorcontrib>Nandy, Ananya</creatorcontrib><creatorcontrib>Jaisinghani, Neetika</creatorcontrib><creatorcontrib>Singh, Archana</creatorcontrib><creatorcontrib>Gokhale, Rajesh S.</creatorcontrib><creatorcontrib>Gandotra, Sheetal</creatorcontrib><creatorcontrib>Rao, Vivek</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bothra, Ankur</au><au>Arumugam, Prabhakar</au><au>Panchal, Vipul</au><au>Menon, Dilip</au><au>Srivastava, Sonali</au><au>Shankaran, Deepthi</au><au>Nandy, Ananya</au><au>Jaisinghani, Neetika</au><au>Singh, Archana</au><au>Gokhale, Rajesh S.</au><au>Gandotra, Sheetal</au><au>Rao, Vivek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipid homeostasis, membrane tenacity and survival of Mtb in lipid rich conditions is determined by MmpL11 function</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-05-29</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>8317</spage><epage>14</epage><pages>8317-14</pages><artnum>8317</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The mycobacterial cell wall is a chemically complex array of molecular entities that dictate the pathogenesis of Mycobacterium tuberculosis . Biosynthesis and maintenance of this dynamic entity in mycobacterial physiology is still poorly understood. Here we demonstrate a requirement for M. tuberculosis MmpL11 in the maintenance of the cell wall architecture and stability in response to surface stress. In the presence of a detergent like Tyloxapol, a mmpL11 deletion mutant suffered from a severe growth attenuation as a result of altered membrane polarity, permeability and severe architectural damages. This mutant failed to tolerate permissible concentrations of cis -fatty acids suggesting its increased sensitivity to surface stress, evident as smaller colonies of the mutant outgrown from lipid rich macrophage cultures. Additionally, loss of MmpL11 led to an altered cellular fatty acid flux in the mutant: reduced incorporation into membrane cardiolipin was associated with an increased flux into the cellular triglyceride pool. This increase in storage lipids like triacyl glycerol (TAG) was associated with the altered metabolic state of higher dormancy-associated gene expression and decreased sensitivity to frontline TB drugs. This study provides a detailed mechanistic insight into the function of mmpL11 in stress adaptation of mycobacteria.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29844505</pmid><doi>10.1038/s41598-018-26710-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8646-6634</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2018-05, Vol.8 (1), p.8317-14, Article 8317
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5974182
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 13/106
13/31
14/34
14/35
14/63
38/39
38/77
631/326/421
64/60
692/420/254
Bacterial Proteins - metabolism
Biosynthesis
Cardiolipin
Cell Membrane - metabolism
Cell walls
Clonal deletion
Deletion mutant
Dormancy
Fatty acids
Fatty Acids - metabolism
Gene expression
Glycerol
Homeostasis
Humanities and Social Sciences
Lipid metabolism
Lipids
Macrophages
Membrane permeability
multidisciplinary
Mycobacterium tuberculosis - metabolism
Phospholipids
Phospholipids - metabolism
Polarity
Science
Science (multidisciplinary)
Tuberculosis
title Phospholipid homeostasis, membrane tenacity and survival of Mtb in lipid rich conditions is determined by MmpL11 function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipid%20homeostasis,%20membrane%20tenacity%20and%20survival%20of%20Mtb%20in%20lipid%20rich%20conditions%20is%20determined%20by%20MmpL11%20function&rft.jtitle=Scientific%20reports&rft.au=Bothra,%20Ankur&rft.date=2018-05-29&rft.volume=8&rft.issue=1&rft.spage=8317&rft.epage=14&rft.pages=8317-14&rft.artnum=8317&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-26710-z&rft_dat=%3Cproquest_pubme%3E2047252889%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046590740&rft_id=info:pmid/29844505&rfr_iscdi=true