Defect-engineered epitaxial VO2±δ in strain engineering of heterogeneous soft crystals

The success of strain engineering has made a step further for the enhancement of material properties and the introduction of new physics, especially with the discovery of the critical roles of strain in the heterogeneous interface between two dissimilar materials (for example, FeSe/SrTiO3). On the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2018-05, Vol.4 (5), p.eaar3679-eaar3679
Hauptverfasser: Wang, Yiping, Sun, Xin, Chen, Zhizhong, Cai, Zhonghou, Zhou, Hua, Lu, Toh-Ming, Shi, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eaar3679
container_issue 5
container_start_page eaar3679
container_title Science advances
container_volume 4
creator Wang, Yiping
Sun, Xin
Chen, Zhizhong
Cai, Zhonghou
Zhou, Hua
Lu, Toh-Ming
Shi, Jian
description The success of strain engineering has made a step further for the enhancement of material properties and the introduction of new physics, especially with the discovery of the critical roles of strain in the heterogeneous interface between two dissimilar materials (for example, FeSe/SrTiO3). On the other hand, the strain manipulation has been limited to chemical epitaxy and nanocomposites that, to a large extent, limit the possible material systems that can be explored. By defect engineering, we obtained, for the first time, dense three-dimensional strongly correlated VO2±δ epitaxial nanoforest arrays that can be used as a novel "substrate" for dynamic strain engineering, due to its metal-insulator transition. The highly dense nanoforest is promising for the possible realization of bulk strain similar to the effect of nanocomposites. By growing single-crystalline halide perovskite CsPbBr3, a mechanically soft and emerging semiconducting material, onto the VO2±δ, a heterogeneous interface is created that can entail a ~1% strain transfer upon the metal-insulator transition of VO2±δ. This strain is large enough to trigger a structural phase transition featured by PbX6 octahedral tilting along with a modification of the photoluminescence energy landscape in halide perovskite. Our findings suggest a promising strategy of dynamic strain engineering in a heterogeneous interface carrying soft and strain-sensitive semiconductors that can happen at a larger volumetric value surpassing the conventional critical thickness limit.
doi_str_mv 10.1126/sciadv.aar3679
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5969812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2046015895</sourcerecordid><originalsourceid>FETCH-LOGICAL-o200t-728d1a78f43a03069585fa8e09a3338adf8eb687978e0fca46cefe7b4a1ab0033</originalsourceid><addsrcrecordid>eNpVUMtKBDEQDKKorF49D568jOYxk0kugviGBS8q3kJvpmc3Mpusk-yinyX4BX6A32TwAXqqpruoripC9hg9ZIzLo2gdtKtDgEHIRq-RbS6auuR1pdb_zFtkN8ZHSimrpKyZ3iRbXCsqKa-2ycMZdmhTiX7qPOKAbYELl-DZQV_c3_D314-3wvkipgEy_NKcnxahK2aYcAhT9BiWsYihS4UdXmKCPu6QjS4D7v7giNxdnN-eXpXjm8vr05NxGTilqWy4ahk0qqsEUEGlrlXdgUKqQQihoO0UTqRqdJN3nYVK2my4mVTAYEKpECNy_K27WE7m2Fr02WlvFoObw_BiAjjz_-LdzEzDytRaasV4Ftj_FggxOZMrTWhnNnifazG5MqWYzqSDny9DeFpiTGbuosW-h6_ohtNKUlYrXYtPX-x-6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046015895</pqid></control><display><type>article</type><title>Defect-engineered epitaxial VO2±δ in strain engineering of heterogeneous soft crystals</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wang, Yiping ; Sun, Xin ; Chen, Zhizhong ; Cai, Zhonghou ; Zhou, Hua ; Lu, Toh-Ming ; Shi, Jian</creator><creatorcontrib>Wang, Yiping ; Sun, Xin ; Chen, Zhizhong ; Cai, Zhonghou ; Zhou, Hua ; Lu, Toh-Ming ; Shi, Jian ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The success of strain engineering has made a step further for the enhancement of material properties and the introduction of new physics, especially with the discovery of the critical roles of strain in the heterogeneous interface between two dissimilar materials (for example, FeSe/SrTiO3). On the other hand, the strain manipulation has been limited to chemical epitaxy and nanocomposites that, to a large extent, limit the possible material systems that can be explored. By defect engineering, we obtained, for the first time, dense three-dimensional strongly correlated VO2±δ epitaxial nanoforest arrays that can be used as a novel "substrate" for dynamic strain engineering, due to its metal-insulator transition. The highly dense nanoforest is promising for the possible realization of bulk strain similar to the effect of nanocomposites. By growing single-crystalline halide perovskite CsPbBr3, a mechanically soft and emerging semiconducting material, onto the VO2±δ, a heterogeneous interface is created that can entail a ~1% strain transfer upon the metal-insulator transition of VO2±δ. This strain is large enough to trigger a structural phase transition featured by PbX6 octahedral tilting along with a modification of the photoluminescence energy landscape in halide perovskite. Our findings suggest a promising strategy of dynamic strain engineering in a heterogeneous interface carrying soft and strain-sensitive semiconductors that can happen at a larger volumetric value surpassing the conventional critical thickness limit.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.aar3679</identifier><identifier>PMID: 29806024</identifier><language>eng</language><publisher>United States: AAAS</publisher><subject>Materials Science ; SciAdv r-articles</subject><ispartof>Science advances, 2018-05, Vol.4 (5), p.eaar3679-eaar3679</ispartof><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2018 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000156333371 ; 0000000176263278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969812/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969812/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1468819$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Chen, Zhizhong</creatorcontrib><creatorcontrib>Cai, Zhonghou</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Lu, Toh-Ming</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Defect-engineered epitaxial VO2±δ in strain engineering of heterogeneous soft crystals</title><title>Science advances</title><description>The success of strain engineering has made a step further for the enhancement of material properties and the introduction of new physics, especially with the discovery of the critical roles of strain in the heterogeneous interface between two dissimilar materials (for example, FeSe/SrTiO3). On the other hand, the strain manipulation has been limited to chemical epitaxy and nanocomposites that, to a large extent, limit the possible material systems that can be explored. By defect engineering, we obtained, for the first time, dense three-dimensional strongly correlated VO2±δ epitaxial nanoforest arrays that can be used as a novel "substrate" for dynamic strain engineering, due to its metal-insulator transition. The highly dense nanoforest is promising for the possible realization of bulk strain similar to the effect of nanocomposites. By growing single-crystalline halide perovskite CsPbBr3, a mechanically soft and emerging semiconducting material, onto the VO2±δ, a heterogeneous interface is created that can entail a ~1% strain transfer upon the metal-insulator transition of VO2±δ. This strain is large enough to trigger a structural phase transition featured by PbX6 octahedral tilting along with a modification of the photoluminescence energy landscape in halide perovskite. Our findings suggest a promising strategy of dynamic strain engineering in a heterogeneous interface carrying soft and strain-sensitive semiconductors that can happen at a larger volumetric value surpassing the conventional critical thickness limit.</description><subject>Materials Science</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVUMtKBDEQDKKorF49D568jOYxk0kugviGBS8q3kJvpmc3Mpusk-yinyX4BX6A32TwAXqqpruoripC9hg9ZIzLo2gdtKtDgEHIRq-RbS6auuR1pdb_zFtkN8ZHSimrpKyZ3iRbXCsqKa-2ycMZdmhTiX7qPOKAbYELl-DZQV_c3_D314-3wvkipgEy_NKcnxahK2aYcAhT9BiWsYihS4UdXmKCPu6QjS4D7v7giNxdnN-eXpXjm8vr05NxGTilqWy4ahk0qqsEUEGlrlXdgUKqQQihoO0UTqRqdJN3nYVK2my4mVTAYEKpECNy_K27WE7m2Fr02WlvFoObw_BiAjjz_-LdzEzDytRaasV4Ftj_FggxOZMrTWhnNnifazG5MqWYzqSDny9DeFpiTGbuosW-h6_ohtNKUlYrXYtPX-x-6A</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Wang, Yiping</creator><creator>Sun, Xin</creator><creator>Chen, Zhizhong</creator><creator>Cai, Zhonghou</creator><creator>Zhou, Hua</creator><creator>Lu, Toh-Ming</creator><creator>Shi, Jian</creator><general>AAAS</general><general>American Association for the Advancement of Science</general><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000000156333371</orcidid><orcidid>https://orcid.org/0000000176263278</orcidid></search><sort><creationdate>20180501</creationdate><title>Defect-engineered epitaxial VO2±δ in strain engineering of heterogeneous soft crystals</title><author>Wang, Yiping ; Sun, Xin ; Chen, Zhizhong ; Cai, Zhonghou ; Zhou, Hua ; Lu, Toh-Ming ; Shi, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o200t-728d1a78f43a03069585fa8e09a3338adf8eb687978e0fca46cefe7b4a1ab0033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Materials Science</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Chen, Zhizhong</creatorcontrib><creatorcontrib>Cai, Zhonghou</creatorcontrib><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Lu, Toh-Ming</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yiping</au><au>Sun, Xin</au><au>Chen, Zhizhong</au><au>Cai, Zhonghou</au><au>Zhou, Hua</au><au>Lu, Toh-Ming</au><au>Shi, Jian</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect-engineered epitaxial VO2±δ in strain engineering of heterogeneous soft crystals</atitle><jtitle>Science advances</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>4</volume><issue>5</issue><spage>eaar3679</spage><epage>eaar3679</epage><pages>eaar3679-eaar3679</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The success of strain engineering has made a step further for the enhancement of material properties and the introduction of new physics, especially with the discovery of the critical roles of strain in the heterogeneous interface between two dissimilar materials (for example, FeSe/SrTiO3). On the other hand, the strain manipulation has been limited to chemical epitaxy and nanocomposites that, to a large extent, limit the possible material systems that can be explored. By defect engineering, we obtained, for the first time, dense three-dimensional strongly correlated VO2±δ epitaxial nanoforest arrays that can be used as a novel "substrate" for dynamic strain engineering, due to its metal-insulator transition. The highly dense nanoforest is promising for the possible realization of bulk strain similar to the effect of nanocomposites. By growing single-crystalline halide perovskite CsPbBr3, a mechanically soft and emerging semiconducting material, onto the VO2±δ, a heterogeneous interface is created that can entail a ~1% strain transfer upon the metal-insulator transition of VO2±δ. This strain is large enough to trigger a structural phase transition featured by PbX6 octahedral tilting along with a modification of the photoluminescence energy landscape in halide perovskite. Our findings suggest a promising strategy of dynamic strain engineering in a heterogeneous interface carrying soft and strain-sensitive semiconductors that can happen at a larger volumetric value surpassing the conventional critical thickness limit.</abstract><cop>United States</cop><pub>AAAS</pub><pmid>29806024</pmid><doi>10.1126/sciadv.aar3679</doi><orcidid>https://orcid.org/0000000156333371</orcidid><orcidid>https://orcid.org/0000000176263278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2018-05, Vol.4 (5), p.eaar3679-eaar3679
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5969812
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Materials Science
SciAdv r-articles
title Defect-engineered epitaxial VO2±δ in strain engineering of heterogeneous soft crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect-engineered%20epitaxial%20VO2%C2%B1%CE%B4%20in%20strain%20engineering%20of%20heterogeneous%20soft%20crystals&rft.jtitle=Science%20advances&rft.au=Wang,%20Yiping&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2018-05-01&rft.volume=4&rft.issue=5&rft.spage=eaar3679&rft.epage=eaar3679&rft.pages=eaar3679-eaar3679&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.aar3679&rft_dat=%3Cproquest_pubme%3E2046015895%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046015895&rft_id=info:pmid/29806024&rfr_iscdi=true