Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane
The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphoge...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-04, Vol.356 (6334), p.197-200 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | 6334 |
container_start_page | 197 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 356 |
creator | Cohen, Eli J. Ferreira, Josie L. Ladinsky, Mark S. Beeby, Morgan Hughes, Kelly T. |
description | The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphogenesis follows a defined path, with each component self-assembling to predetermined dimensions. The flagellar rod acts as a driveshaft to transmit torque from the cytoplasmic rotor to the external filament. The rod self-assembles to a defined length of ~25 nanometers. Here, we provide evidence that rod length is limited by the width of the periplasmic space between the inner and outer membranes. The length of Braun's lipoprotein determines periplasmic width by tethering the outer membrane to the peptidoglycan layer. |
doi_str_mv | 10.1126/science.aam6512 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5963725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24918215</jstor_id><sourcerecordid>24918215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-1c056e34005f0ab0efb644bcef971d8af1b46d11272e9b02abe8f226c5481e693</originalsourceid><addsrcrecordid>eNqFkTtvFDEUhS0EIkugpgKNREMzyfVz7AYJRbykCBqoLY_nendWM-PE9kTi3-Nll_BoaK6L8_nonnsIeU7hglKmLrMfcfF44dysJGUPyIaCka1hwB-SDQBXrYZOnpEnOe8Bqmb4Y3LGtACtQG6I--yWmL2bsJ1w2ZZd4-NSUpyaGJqywyZMbovT5FIzpPEO886F0iS8XceEudmNpYzL9idZsM6EQxPXgqmZce6TW_ApeRTclPHZ6T0n396_-3r1sb3-8uHT1dvr1svOlJZ6kAq5AJABXA8YeiVE7zGYjg7aBdoLNdTQHUPTA3M96sCY8lJoisrwc_Lm6Huz9jMOHmsMN9mbNM4ufbfRjfZvZRl3dhvvrDSKd0xWg9cngxRvV8zFzmP2h-wLxjVbakAw6KhQ_0e11qrrhICKvvoH3cc1LfUSB6rjhoPmlbo8Uj7FnBOG-70p2EPT9tS0PTVdf7z8M-49_6vaCrw4AvtcYvqtC0M1o5L_AILMskI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887393083</pqid></control><display><type>article</type><title>Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Cohen, Eli J. ; Ferreira, Josie L. ; Ladinsky, Mark S. ; Beeby, Morgan ; Hughes, Kelly T.</creator><creatorcontrib>Cohen, Eli J. ; Ferreira, Josie L. ; Ladinsky, Mark S. ; Beeby, Morgan ; Hughes, Kelly T.</creatorcontrib><description>The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphogenesis follows a defined path, with each component self-assembling to predetermined dimensions. The flagellar rod acts as a driveshaft to transmit torque from the cytoplasmic rotor to the external filament. The rod self-assembles to a defined length of ~25 nanometers. Here, we provide evidence that rod length is limited by the width of the periplasmic space between the inner and outer membranes. The length of Braun's lipoprotein determines periplasmic width by tethering the outer membrane to the peptidoglycan layer.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aam6512</identifier><identifier>PMID: 28408605</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Automation ; Bacteria ; Bacteria - ultrastructure ; Bacterial proteins ; Bacterial Proteins - ultrastructure ; Biofilms ; Cell Membrane - ultrastructure ; Crystal structure ; Deviation ; Escherichia coli - ultrastructure ; Filaments ; Flagella ; Flagella - ultrastructure ; Lipids ; Lipoproteins - ultrastructure ; Manufacturing engineering ; Membranes ; Morphogenesis ; Nanostructure ; Nanotechnology devices ; Outer membranes ; Pathogenesis ; Peptidoglycan - ultrastructure ; Peptidoglycans ; Periplasm ; Periplasm - ultrastructure ; Periplasmic space ; Regulatory mechanisms (biology) ; Robotics ; Salmonella enterica - ultrastructure ; Self-assembly ; Shafts (machine elements) ; Tethering ; Torque</subject><ispartof>Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6334), p.197-200</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-1c056e34005f0ab0efb644bcef971d8af1b46d11272e9b02abe8f226c5481e693</citedby><cites>FETCH-LOGICAL-c579t-1c056e34005f0ab0efb644bcef971d8af1b46d11272e9b02abe8f226c5481e693</cites><orcidid>0000-0001-9265-7517 ; 0000-0002-4411-6131 ; 0000-0002-1036-3513 ; 0000-0001-5344-0972 ; 0000-0001-6413-9835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24918215$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24918215$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28408605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Eli J.</creatorcontrib><creatorcontrib>Ferreira, Josie L.</creatorcontrib><creatorcontrib>Ladinsky, Mark S.</creatorcontrib><creatorcontrib>Beeby, Morgan</creatorcontrib><creatorcontrib>Hughes, Kelly T.</creatorcontrib><title>Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphogenesis follows a defined path, with each component self-assembling to predetermined dimensions. The flagellar rod acts as a driveshaft to transmit torque from the cytoplasmic rotor to the external filament. The rod self-assembles to a defined length of ~25 nanometers. Here, we provide evidence that rod length is limited by the width of the periplasmic space between the inner and outer membranes. The length of Braun's lipoprotein determines periplasmic width by tethering the outer membrane to the peptidoglycan layer.</description><subject>Automation</subject><subject>Bacteria</subject><subject>Bacteria - ultrastructure</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Biofilms</subject><subject>Cell Membrane - ultrastructure</subject><subject>Crystal structure</subject><subject>Deviation</subject><subject>Escherichia coli - ultrastructure</subject><subject>Filaments</subject><subject>Flagella</subject><subject>Flagella - ultrastructure</subject><subject>Lipids</subject><subject>Lipoproteins - ultrastructure</subject><subject>Manufacturing engineering</subject><subject>Membranes</subject><subject>Morphogenesis</subject><subject>Nanostructure</subject><subject>Nanotechnology devices</subject><subject>Outer membranes</subject><subject>Pathogenesis</subject><subject>Peptidoglycan - ultrastructure</subject><subject>Peptidoglycans</subject><subject>Periplasm</subject><subject>Periplasm - ultrastructure</subject><subject>Periplasmic space</subject><subject>Regulatory mechanisms (biology)</subject><subject>Robotics</subject><subject>Salmonella enterica - ultrastructure</subject><subject>Self-assembly</subject><subject>Shafts (machine elements)</subject><subject>Tethering</subject><subject>Torque</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtvFDEUhS0EIkugpgKNREMzyfVz7AYJRbykCBqoLY_nendWM-PE9kTi3-Nll_BoaK6L8_nonnsIeU7hglKmLrMfcfF44dysJGUPyIaCka1hwB-SDQBXrYZOnpEnOe8Bqmb4Y3LGtACtQG6I--yWmL2bsJ1w2ZZd4-NSUpyaGJqywyZMbovT5FIzpPEO886F0iS8XceEudmNpYzL9idZsM6EQxPXgqmZce6TW_ApeRTclPHZ6T0n396_-3r1sb3-8uHT1dvr1svOlJZ6kAq5AJABXA8YeiVE7zGYjg7aBdoLNdTQHUPTA3M96sCY8lJoisrwc_Lm6Huz9jMOHmsMN9mbNM4ufbfRjfZvZRl3dhvvrDSKd0xWg9cngxRvV8zFzmP2h-wLxjVbakAw6KhQ_0e11qrrhICKvvoH3cc1LfUSB6rjhoPmlbo8Uj7FnBOG-70p2EPT9tS0PTVdf7z8M-49_6vaCrw4AvtcYvqtC0M1o5L_AILMskI</recordid><startdate>20170414</startdate><enddate>20170414</enddate><creator>Cohen, Eli J.</creator><creator>Ferreira, Josie L.</creator><creator>Ladinsky, Mark S.</creator><creator>Beeby, Morgan</creator><creator>Hughes, Kelly T.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9265-7517</orcidid><orcidid>https://orcid.org/0000-0002-4411-6131</orcidid><orcidid>https://orcid.org/0000-0002-1036-3513</orcidid><orcidid>https://orcid.org/0000-0001-5344-0972</orcidid><orcidid>https://orcid.org/0000-0001-6413-9835</orcidid></search><sort><creationdate>20170414</creationdate><title>Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane</title><author>Cohen, Eli J. ; Ferreira, Josie L. ; Ladinsky, Mark S. ; Beeby, Morgan ; Hughes, Kelly T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-1c056e34005f0ab0efb644bcef971d8af1b46d11272e9b02abe8f226c5481e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automation</topic><topic>Bacteria</topic><topic>Bacteria - ultrastructure</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Biofilms</topic><topic>Cell Membrane - ultrastructure</topic><topic>Crystal structure</topic><topic>Deviation</topic><topic>Escherichia coli - ultrastructure</topic><topic>Filaments</topic><topic>Flagella</topic><topic>Flagella - ultrastructure</topic><topic>Lipids</topic><topic>Lipoproteins - ultrastructure</topic><topic>Manufacturing engineering</topic><topic>Membranes</topic><topic>Morphogenesis</topic><topic>Nanostructure</topic><topic>Nanotechnology devices</topic><topic>Outer membranes</topic><topic>Pathogenesis</topic><topic>Peptidoglycan - ultrastructure</topic><topic>Peptidoglycans</topic><topic>Periplasm</topic><topic>Periplasm - ultrastructure</topic><topic>Periplasmic space</topic><topic>Regulatory mechanisms (biology)</topic><topic>Robotics</topic><topic>Salmonella enterica - ultrastructure</topic><topic>Self-assembly</topic><topic>Shafts (machine elements)</topic><topic>Tethering</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Eli J.</creatorcontrib><creatorcontrib>Ferreira, Josie L.</creatorcontrib><creatorcontrib>Ladinsky, Mark S.</creatorcontrib><creatorcontrib>Beeby, Morgan</creatorcontrib><creatorcontrib>Hughes, Kelly T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Eli J.</au><au>Ferreira, Josie L.</au><au>Ladinsky, Mark S.</au><au>Beeby, Morgan</au><au>Hughes, Kelly T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-04-14</date><risdate>2017</risdate><volume>356</volume><issue>6334</issue><spage>197</spage><epage>200</epage><pages>197-200</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphogenesis follows a defined path, with each component self-assembling to predetermined dimensions. The flagellar rod acts as a driveshaft to transmit torque from the cytoplasmic rotor to the external filament. The rod self-assembles to a defined length of ~25 nanometers. Here, we provide evidence that rod length is limited by the width of the periplasmic space between the inner and outer membranes. The length of Braun's lipoprotein determines periplasmic width by tethering the outer membrane to the peptidoglycan layer.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28408605</pmid><doi>10.1126/science.aam6512</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9265-7517</orcidid><orcidid>https://orcid.org/0000-0002-4411-6131</orcidid><orcidid>https://orcid.org/0000-0002-1036-3513</orcidid><orcidid>https://orcid.org/0000-0001-5344-0972</orcidid><orcidid>https://orcid.org/0000-0001-6413-9835</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6334), p.197-200 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5963725 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Automation Bacteria Bacteria - ultrastructure Bacterial proteins Bacterial Proteins - ultrastructure Biofilms Cell Membrane - ultrastructure Crystal structure Deviation Escherichia coli - ultrastructure Filaments Flagella Flagella - ultrastructure Lipids Lipoproteins - ultrastructure Manufacturing engineering Membranes Morphogenesis Nanostructure Nanotechnology devices Outer membranes Pathogenesis Peptidoglycan - ultrastructure Peptidoglycans Periplasm Periplasm - ultrastructure Periplasmic space Regulatory mechanisms (biology) Robotics Salmonella enterica - ultrastructure Self-assembly Shafts (machine elements) Tethering Torque |
title | Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale-length%20control%20of%20the%20flagellar%20driveshaft%20requires%20hitting%20the%20tethered%20outer%20membrane&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Cohen,%20Eli%20J.&rft.date=2017-04-14&rft.volume=356&rft.issue=6334&rft.spage=197&rft.epage=200&rft.pages=197-200&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aam6512&rft_dat=%3Cjstor_pubme%3E24918215%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1887393083&rft_id=info:pmid/28408605&rft_jstor_id=24918215&rfr_iscdi=true |