Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane

The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphoge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-04, Vol.356 (6334), p.197-200
Hauptverfasser: Cohen, Eli J., Ferreira, Josie L., Ladinsky, Mark S., Beeby, Morgan, Hughes, Kelly T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 6334
container_start_page 197
container_title Science (American Association for the Advancement of Science)
container_volume 356
creator Cohen, Eli J.
Ferreira, Josie L.
Ladinsky, Mark S.
Beeby, Morgan
Hughes, Kelly T.
description The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphogenesis follows a defined path, with each component self-assembling to predetermined dimensions. The flagellar rod acts as a driveshaft to transmit torque from the cytoplasmic rotor to the external filament. The rod self-assembles to a defined length of ~25 nanometers. Here, we provide evidence that rod length is limited by the width of the periplasmic space between the inner and outer membranes. The length of Braun's lipoprotein determines periplasmic width by tethering the outer membrane to the peptidoglycan layer.
doi_str_mv 10.1126/science.aam6512
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5963725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24918215</jstor_id><sourcerecordid>24918215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-1c056e34005f0ab0efb644bcef971d8af1b46d11272e9b02abe8f226c5481e693</originalsourceid><addsrcrecordid>eNqFkTtvFDEUhS0EIkugpgKNREMzyfVz7AYJRbykCBqoLY_nendWM-PE9kTi3-Nll_BoaK6L8_nonnsIeU7hglKmLrMfcfF44dysJGUPyIaCka1hwB-SDQBXrYZOnpEnOe8Bqmb4Y3LGtACtQG6I--yWmL2bsJ1w2ZZd4-NSUpyaGJqywyZMbovT5FIzpPEO886F0iS8XceEudmNpYzL9idZsM6EQxPXgqmZce6TW_ApeRTclPHZ6T0n396_-3r1sb3-8uHT1dvr1svOlJZ6kAq5AJABXA8YeiVE7zGYjg7aBdoLNdTQHUPTA3M96sCY8lJoisrwc_Lm6Huz9jMOHmsMN9mbNM4ufbfRjfZvZRl3dhvvrDSKd0xWg9cngxRvV8zFzmP2h-wLxjVbakAw6KhQ_0e11qrrhICKvvoH3cc1LfUSB6rjhoPmlbo8Uj7FnBOG-70p2EPT9tS0PTVdf7z8M-49_6vaCrw4AvtcYvqtC0M1o5L_AILMskI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887393083</pqid></control><display><type>article</type><title>Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Cohen, Eli J. ; Ferreira, Josie L. ; Ladinsky, Mark S. ; Beeby, Morgan ; Hughes, Kelly T.</creator><creatorcontrib>Cohen, Eli J. ; Ferreira, Josie L. ; Ladinsky, Mark S. ; Beeby, Morgan ; Hughes, Kelly T.</creatorcontrib><description>The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphogenesis follows a defined path, with each component self-assembling to predetermined dimensions. The flagellar rod acts as a driveshaft to transmit torque from the cytoplasmic rotor to the external filament. The rod self-assembles to a defined length of ~25 nanometers. Here, we provide evidence that rod length is limited by the width of the periplasmic space between the inner and outer membranes. The length of Braun's lipoprotein determines periplasmic width by tethering the outer membrane to the peptidoglycan layer.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aam6512</identifier><identifier>PMID: 28408605</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Automation ; Bacteria ; Bacteria - ultrastructure ; Bacterial proteins ; Bacterial Proteins - ultrastructure ; Biofilms ; Cell Membrane - ultrastructure ; Crystal structure ; Deviation ; Escherichia coli - ultrastructure ; Filaments ; Flagella ; Flagella - ultrastructure ; Lipids ; Lipoproteins - ultrastructure ; Manufacturing engineering ; Membranes ; Morphogenesis ; Nanostructure ; Nanotechnology devices ; Outer membranes ; Pathogenesis ; Peptidoglycan - ultrastructure ; Peptidoglycans ; Periplasm ; Periplasm - ultrastructure ; Periplasmic space ; Regulatory mechanisms (biology) ; Robotics ; Salmonella enterica - ultrastructure ; Self-assembly ; Shafts (machine elements) ; Tethering ; Torque</subject><ispartof>Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6334), p.197-200</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-1c056e34005f0ab0efb644bcef971d8af1b46d11272e9b02abe8f226c5481e693</citedby><cites>FETCH-LOGICAL-c579t-1c056e34005f0ab0efb644bcef971d8af1b46d11272e9b02abe8f226c5481e693</cites><orcidid>0000-0001-9265-7517 ; 0000-0002-4411-6131 ; 0000-0002-1036-3513 ; 0000-0001-5344-0972 ; 0000-0001-6413-9835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24918215$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24918215$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28408605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Eli J.</creatorcontrib><creatorcontrib>Ferreira, Josie L.</creatorcontrib><creatorcontrib>Ladinsky, Mark S.</creatorcontrib><creatorcontrib>Beeby, Morgan</creatorcontrib><creatorcontrib>Hughes, Kelly T.</creatorcontrib><title>Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphogenesis follows a defined path, with each component self-assembling to predetermined dimensions. The flagellar rod acts as a driveshaft to transmit torque from the cytoplasmic rotor to the external filament. The rod self-assembles to a defined length of ~25 nanometers. Here, we provide evidence that rod length is limited by the width of the periplasmic space between the inner and outer membranes. The length of Braun's lipoprotein determines periplasmic width by tethering the outer membrane to the peptidoglycan layer.</description><subject>Automation</subject><subject>Bacteria</subject><subject>Bacteria - ultrastructure</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Biofilms</subject><subject>Cell Membrane - ultrastructure</subject><subject>Crystal structure</subject><subject>Deviation</subject><subject>Escherichia coli - ultrastructure</subject><subject>Filaments</subject><subject>Flagella</subject><subject>Flagella - ultrastructure</subject><subject>Lipids</subject><subject>Lipoproteins - ultrastructure</subject><subject>Manufacturing engineering</subject><subject>Membranes</subject><subject>Morphogenesis</subject><subject>Nanostructure</subject><subject>Nanotechnology devices</subject><subject>Outer membranes</subject><subject>Pathogenesis</subject><subject>Peptidoglycan - ultrastructure</subject><subject>Peptidoglycans</subject><subject>Periplasm</subject><subject>Periplasm - ultrastructure</subject><subject>Periplasmic space</subject><subject>Regulatory mechanisms (biology)</subject><subject>Robotics</subject><subject>Salmonella enterica - ultrastructure</subject><subject>Self-assembly</subject><subject>Shafts (machine elements)</subject><subject>Tethering</subject><subject>Torque</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtvFDEUhS0EIkugpgKNREMzyfVz7AYJRbykCBqoLY_nendWM-PE9kTi3-Nll_BoaK6L8_nonnsIeU7hglKmLrMfcfF44dysJGUPyIaCka1hwB-SDQBXrYZOnpEnOe8Bqmb4Y3LGtACtQG6I--yWmL2bsJ1w2ZZd4-NSUpyaGJqywyZMbovT5FIzpPEO886F0iS8XceEudmNpYzL9idZsM6EQxPXgqmZce6TW_ApeRTclPHZ6T0n396_-3r1sb3-8uHT1dvr1svOlJZ6kAq5AJABXA8YeiVE7zGYjg7aBdoLNdTQHUPTA3M96sCY8lJoisrwc_Lm6Huz9jMOHmsMN9mbNM4ufbfRjfZvZRl3dhvvrDSKd0xWg9cngxRvV8zFzmP2h-wLxjVbakAw6KhQ_0e11qrrhICKvvoH3cc1LfUSB6rjhoPmlbo8Uj7FnBOG-70p2EPT9tS0PTVdf7z8M-49_6vaCrw4AvtcYvqtC0M1o5L_AILMskI</recordid><startdate>20170414</startdate><enddate>20170414</enddate><creator>Cohen, Eli J.</creator><creator>Ferreira, Josie L.</creator><creator>Ladinsky, Mark S.</creator><creator>Beeby, Morgan</creator><creator>Hughes, Kelly T.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9265-7517</orcidid><orcidid>https://orcid.org/0000-0002-4411-6131</orcidid><orcidid>https://orcid.org/0000-0002-1036-3513</orcidid><orcidid>https://orcid.org/0000-0001-5344-0972</orcidid><orcidid>https://orcid.org/0000-0001-6413-9835</orcidid></search><sort><creationdate>20170414</creationdate><title>Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane</title><author>Cohen, Eli J. ; Ferreira, Josie L. ; Ladinsky, Mark S. ; Beeby, Morgan ; Hughes, Kelly T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-1c056e34005f0ab0efb644bcef971d8af1b46d11272e9b02abe8f226c5481e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automation</topic><topic>Bacteria</topic><topic>Bacteria - ultrastructure</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Biofilms</topic><topic>Cell Membrane - ultrastructure</topic><topic>Crystal structure</topic><topic>Deviation</topic><topic>Escherichia coli - ultrastructure</topic><topic>Filaments</topic><topic>Flagella</topic><topic>Flagella - ultrastructure</topic><topic>Lipids</topic><topic>Lipoproteins - ultrastructure</topic><topic>Manufacturing engineering</topic><topic>Membranes</topic><topic>Morphogenesis</topic><topic>Nanostructure</topic><topic>Nanotechnology devices</topic><topic>Outer membranes</topic><topic>Pathogenesis</topic><topic>Peptidoglycan - ultrastructure</topic><topic>Peptidoglycans</topic><topic>Periplasm</topic><topic>Periplasm - ultrastructure</topic><topic>Periplasmic space</topic><topic>Regulatory mechanisms (biology)</topic><topic>Robotics</topic><topic>Salmonella enterica - ultrastructure</topic><topic>Self-assembly</topic><topic>Shafts (machine elements)</topic><topic>Tethering</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Eli J.</creatorcontrib><creatorcontrib>Ferreira, Josie L.</creatorcontrib><creatorcontrib>Ladinsky, Mark S.</creatorcontrib><creatorcontrib>Beeby, Morgan</creatorcontrib><creatorcontrib>Hughes, Kelly T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Eli J.</au><au>Ferreira, Josie L.</au><au>Ladinsky, Mark S.</au><au>Beeby, Morgan</au><au>Hughes, Kelly T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-04-14</date><risdate>2017</risdate><volume>356</volume><issue>6334</issue><spage>197</spage><epage>200</epage><pages>197-200</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The bacterial flagellum exemplifies a system where even small deviations from the highly regulated flagellar assembly process can abolish motility and cause negative physiological outcomes. Consequently, bacteria have evolved elegant and robust regulatory mechanisms to ensure that flagellar morphogenesis follows a defined path, with each component self-assembling to predetermined dimensions. The flagellar rod acts as a driveshaft to transmit torque from the cytoplasmic rotor to the external filament. The rod self-assembles to a defined length of ~25 nanometers. Here, we provide evidence that rod length is limited by the width of the periplasmic space between the inner and outer membranes. The length of Braun's lipoprotein determines periplasmic width by tethering the outer membrane to the peptidoglycan layer.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28408605</pmid><doi>10.1126/science.aam6512</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9265-7517</orcidid><orcidid>https://orcid.org/0000-0002-4411-6131</orcidid><orcidid>https://orcid.org/0000-0002-1036-3513</orcidid><orcidid>https://orcid.org/0000-0001-5344-0972</orcidid><orcidid>https://orcid.org/0000-0001-6413-9835</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-04, Vol.356 (6334), p.197-200
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5963725
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Automation
Bacteria
Bacteria - ultrastructure
Bacterial proteins
Bacterial Proteins - ultrastructure
Biofilms
Cell Membrane - ultrastructure
Crystal structure
Deviation
Escherichia coli - ultrastructure
Filaments
Flagella
Flagella - ultrastructure
Lipids
Lipoproteins - ultrastructure
Manufacturing engineering
Membranes
Morphogenesis
Nanostructure
Nanotechnology devices
Outer membranes
Pathogenesis
Peptidoglycan - ultrastructure
Peptidoglycans
Periplasm
Periplasm - ultrastructure
Periplasmic space
Regulatory mechanisms (biology)
Robotics
Salmonella enterica - ultrastructure
Self-assembly
Shafts (machine elements)
Tethering
Torque
title Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale-length%20control%20of%20the%20flagellar%20driveshaft%20requires%20hitting%20the%20tethered%20outer%20membrane&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Cohen,%20Eli%20J.&rft.date=2017-04-14&rft.volume=356&rft.issue=6334&rft.spage=197&rft.epage=200&rft.pages=197-200&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aam6512&rft_dat=%3Cjstor_pubme%3E24918215%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1887393083&rft_id=info:pmid/28408605&rft_jstor_id=24918215&rfr_iscdi=true