Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records

Neonatal encephalopathy (NE) is a leading cause of neonatal mortality and lifetime neurological disability. The earlier the risk of NE can be assessed, the more effective interventions can be in preventing adverse outcomes. Existing studies that focus on intrapartum risk factors do not provide the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA Summits on Translational Science proceedings 2018, Vol.2017, p.359-368
Hauptverfasser: Li, Thomas, Gao, Cheng, Yan, Chao, Osmundson, Sarah, Malin, Bradley A, Chen, You
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue
container_start_page 359
container_title AMIA Summits on Translational Science proceedings
container_volume 2017
creator Li, Thomas
Gao, Cheng
Yan, Chao
Osmundson, Sarah
Malin, Bradley A
Chen, You
description Neonatal encephalopathy (NE) is a leading cause of neonatal mortality and lifetime neurological disability. The earlier the risk of NE can be assessed, the more effective interventions can be in preventing adverse outcomes. Existing studies that focus on intrapartum risk factors do not provide the early prognostic forecasting necessary to prepare healthcare professionals to intervene early in a high-risk NE case. This work used maternal data in a supervised machine learning framework to predict NE events. Specifically, we 1) collected the electronic medical records (EMRs) for 104 NE newborns and 31,054 non-NE newborns and their mothers, 2) trained and tested a regularized logistic regression on imbalanced and high-dimensional EMR data, and 3) discerned important features that could be possible risk factors. The learned model offers prenatal predictions of NE cases with an average area under the receiving operator characteristic curve (AUC) of 87% and identified the most important predictors.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5961831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2053283738</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1111-553f444bef7366390bc116733eab82047812e81be5c2ef8818f81c69d3dec4703</originalsourceid><addsrcrecordid>eNpVkF1LwzAYhYMobsz9BcmlN4Wk-Wh6I8jcnLCp-HFd0vTtFmmTmnTC_r0Vp8xz875wDs-Bc4LGKRUs4USy06N_hKYxvpNBnMtc8HM0SnOlFMn5GL08Bais6a3b4AfwTve6wXNnoNvqxne63-7xIvgWr3UPwQ3m7RDB1uF5A6YP3lmD19-IwXoG40MVL9BZrZsI08OdoLfF_HW2TFaPd_ezm1XS0UGJEKzmnJdQZ0xKlpPSUCozxkCXKiU8UzQFRUsQJoVaKapqRY3MK1aB4RlhE3T9w-12ZQuVAdcH3RRdsK0O-8JrW_x3nN0WG_9ZiFxSxegAuDoAgv_YQeyL1kYDTaMd-F0sUiJYqljG1BC9PO76K_ldkn0B2_5xsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2053283738</pqid></control><display><type>article</type><title>Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Thomas ; Gao, Cheng ; Yan, Chao ; Osmundson, Sarah ; Malin, Bradley A ; Chen, You</creator><creatorcontrib>Li, Thomas ; Gao, Cheng ; Yan, Chao ; Osmundson, Sarah ; Malin, Bradley A ; Chen, You</creatorcontrib><description>Neonatal encephalopathy (NE) is a leading cause of neonatal mortality and lifetime neurological disability. The earlier the risk of NE can be assessed, the more effective interventions can be in preventing adverse outcomes. Existing studies that focus on intrapartum risk factors do not provide the early prognostic forecasting necessary to prepare healthcare professionals to intervene early in a high-risk NE case. This work used maternal data in a supervised machine learning framework to predict NE events. Specifically, we 1) collected the electronic medical records (EMRs) for 104 NE newborns and 31,054 non-NE newborns and their mothers, 2) trained and tested a regularized logistic regression on imbalanced and high-dimensional EMR data, and 3) discerned important features that could be possible risk factors. The learned model offers prenatal predictions of NE cases with an average area under the receiving operator characteristic curve (AUC) of 87% and identified the most important predictors.</description><identifier>ISSN: 2153-4063</identifier><identifier>EISSN: 2153-4063</identifier><identifier>PMID: 29888094</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><ispartof>AMIA Summits on Translational Science proceedings, 2018, Vol.2017, p.359-368</ispartof><rights>2018 AMIA - All rights reserved. 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961831/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961831/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29888094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Thomas</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Osmundson, Sarah</creatorcontrib><creatorcontrib>Malin, Bradley A</creatorcontrib><creatorcontrib>Chen, You</creatorcontrib><title>Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records</title><title>AMIA Summits on Translational Science proceedings</title><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><description>Neonatal encephalopathy (NE) is a leading cause of neonatal mortality and lifetime neurological disability. The earlier the risk of NE can be assessed, the more effective interventions can be in preventing adverse outcomes. Existing studies that focus on intrapartum risk factors do not provide the early prognostic forecasting necessary to prepare healthcare professionals to intervene early in a high-risk NE case. This work used maternal data in a supervised machine learning framework to predict NE events. Specifically, we 1) collected the electronic medical records (EMRs) for 104 NE newborns and 31,054 non-NE newborns and their mothers, 2) trained and tested a regularized logistic regression on imbalanced and high-dimensional EMR data, and 3) discerned important features that could be possible risk factors. The learned model offers prenatal predictions of NE cases with an average area under the receiving operator characteristic curve (AUC) of 87% and identified the most important predictors.</description><issn>2153-4063</issn><issn>2153-4063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkF1LwzAYhYMobsz9BcmlN4Wk-Wh6I8jcnLCp-HFd0vTtFmmTmnTC_r0Vp8xz875wDs-Bc4LGKRUs4USy06N_hKYxvpNBnMtc8HM0SnOlFMn5GL08Bais6a3b4AfwTve6wXNnoNvqxne63-7xIvgWr3UPwQ3m7RDB1uF5A6YP3lmD19-IwXoG40MVL9BZrZsI08OdoLfF_HW2TFaPd_ezm1XS0UGJEKzmnJdQZ0xKlpPSUCozxkCXKiU8UzQFRUsQJoVaKapqRY3MK1aB4RlhE3T9w-12ZQuVAdcH3RRdsK0O-8JrW_x3nN0WG_9ZiFxSxegAuDoAgv_YQeyL1kYDTaMd-F0sUiJYqljG1BC9PO76K_ldkn0B2_5xsg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Li, Thomas</creator><creator>Gao, Cheng</creator><creator>Yan, Chao</creator><creator>Osmundson, Sarah</creator><creator>Malin, Bradley A</creator><creator>Chen, You</creator><general>American Medical Informatics Association</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2018</creationdate><title>Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records</title><author>Li, Thomas ; Gao, Cheng ; Yan, Chao ; Osmundson, Sarah ; Malin, Bradley A ; Chen, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1111-553f444bef7366390bc116733eab82047812e81be5c2ef8818f81c69d3dec4703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Li, Thomas</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Osmundson, Sarah</creatorcontrib><creatorcontrib>Malin, Bradley A</creatorcontrib><creatorcontrib>Chen, You</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA Summits on Translational Science proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Thomas</au><au>Gao, Cheng</au><au>Yan, Chao</au><au>Osmundson, Sarah</au><au>Malin, Bradley A</au><au>Chen, You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records</atitle><jtitle>AMIA Summits on Translational Science proceedings</jtitle><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><date>2018</date><risdate>2018</risdate><volume>2017</volume><spage>359</spage><epage>368</epage><pages>359-368</pages><issn>2153-4063</issn><eissn>2153-4063</eissn><abstract>Neonatal encephalopathy (NE) is a leading cause of neonatal mortality and lifetime neurological disability. The earlier the risk of NE can be assessed, the more effective interventions can be in preventing adverse outcomes. Existing studies that focus on intrapartum risk factors do not provide the early prognostic forecasting necessary to prepare healthcare professionals to intervene early in a high-risk NE case. This work used maternal data in a supervised machine learning framework to predict NE events. Specifically, we 1) collected the electronic medical records (EMRs) for 104 NE newborns and 31,054 non-NE newborns and their mothers, 2) trained and tested a regularized logistic regression on imbalanced and high-dimensional EMR data, and 3) discerned important features that could be possible risk factors. The learned model offers prenatal predictions of NE cases with an average area under the receiving operator characteristic curve (AUC) of 87% and identified the most important predictors.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>29888094</pmid><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2153-4063
ispartof AMIA Summits on Translational Science proceedings, 2018, Vol.2017, p.359-368
issn 2153-4063
2153-4063
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5961831
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Neonatal%20Encephalopathy%20From%20Maternal%20Data%20in%20Electronic%20Medical%20Records&rft.jtitle=AMIA%20Summits%20on%20Translational%20Science%20proceedings&rft.au=Li,%20Thomas&rft.date=2018&rft.volume=2017&rft.spage=359&rft.epage=368&rft.pages=359-368&rft.issn=2153-4063&rft.eissn=2153-4063&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2053283738%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2053283738&rft_id=info:pmid/29888094&rfr_iscdi=true