Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records
Neonatal encephalopathy (NE) is a leading cause of neonatal mortality and lifetime neurological disability. The earlier the risk of NE can be assessed, the more effective interventions can be in preventing adverse outcomes. Existing studies that focus on intrapartum risk factors do not provide the e...
Gespeichert in:
Veröffentlicht in: | AMIA Summits on Translational Science proceedings 2018, Vol.2017, p.359-368 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | |
container_start_page | 359 |
container_title | AMIA Summits on Translational Science proceedings |
container_volume | 2017 |
creator | Li, Thomas Gao, Cheng Yan, Chao Osmundson, Sarah Malin, Bradley A Chen, You |
description | Neonatal encephalopathy (NE) is a leading cause of neonatal mortality and lifetime neurological disability. The earlier the risk of NE can be assessed, the more effective interventions can be in preventing adverse outcomes. Existing studies that focus on intrapartum risk factors do not provide the early prognostic forecasting necessary to prepare healthcare professionals to intervene early in a high-risk NE case. This work used maternal data in a supervised machine learning framework to predict NE events. Specifically, we 1) collected the electronic medical records (EMRs) for 104 NE newborns and 31,054 non-NE newborns and their mothers, 2) trained and tested a regularized logistic regression on imbalanced and high-dimensional EMR data, and 3) discerned important features that could be possible risk factors. The learned model offers prenatal predictions of NE cases with an average area under the receiving operator characteristic curve (AUC) of 87% and identified the most important predictors. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5961831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2053283738</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1111-553f444bef7366390bc116733eab82047812e81be5c2ef8818f81c69d3dec4703</originalsourceid><addsrcrecordid>eNpVkF1LwzAYhYMobsz9BcmlN4Wk-Wh6I8jcnLCp-HFd0vTtFmmTmnTC_r0Vp8xz875wDs-Bc4LGKRUs4USy06N_hKYxvpNBnMtc8HM0SnOlFMn5GL08Bais6a3b4AfwTve6wXNnoNvqxne63-7xIvgWr3UPwQ3m7RDB1uF5A6YP3lmD19-IwXoG40MVL9BZrZsI08OdoLfF_HW2TFaPd_ezm1XS0UGJEKzmnJdQZ0xKlpPSUCozxkCXKiU8UzQFRUsQJoVaKapqRY3MK1aB4RlhE3T9w-12ZQuVAdcH3RRdsK0O-8JrW_x3nN0WG_9ZiFxSxegAuDoAgv_YQeyL1kYDTaMd-F0sUiJYqljG1BC9PO76K_ldkn0B2_5xsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2053283738</pqid></control><display><type>article</type><title>Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Li, Thomas ; Gao, Cheng ; Yan, Chao ; Osmundson, Sarah ; Malin, Bradley A ; Chen, You</creator><creatorcontrib>Li, Thomas ; Gao, Cheng ; Yan, Chao ; Osmundson, Sarah ; Malin, Bradley A ; Chen, You</creatorcontrib><description>Neonatal encephalopathy (NE) is a leading cause of neonatal mortality and lifetime neurological disability. The earlier the risk of NE can be assessed, the more effective interventions can be in preventing adverse outcomes. Existing studies that focus on intrapartum risk factors do not provide the early prognostic forecasting necessary to prepare healthcare professionals to intervene early in a high-risk NE case. This work used maternal data in a supervised machine learning framework to predict NE events. Specifically, we 1) collected the electronic medical records (EMRs) for 104 NE newborns and 31,054 non-NE newborns and their mothers, 2) trained and tested a regularized logistic regression on imbalanced and high-dimensional EMR data, and 3) discerned important features that could be possible risk factors. The learned model offers prenatal predictions of NE cases with an average area under the receiving operator characteristic curve (AUC) of 87% and identified the most important predictors.</description><identifier>ISSN: 2153-4063</identifier><identifier>EISSN: 2153-4063</identifier><identifier>PMID: 29888094</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><ispartof>AMIA Summits on Translational Science proceedings, 2018, Vol.2017, p.359-368</ispartof><rights>2018 AMIA - All rights reserved. 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961831/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961831/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29888094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Thomas</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Osmundson, Sarah</creatorcontrib><creatorcontrib>Malin, Bradley A</creatorcontrib><creatorcontrib>Chen, You</creatorcontrib><title>Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records</title><title>AMIA Summits on Translational Science proceedings</title><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><description>Neonatal encephalopathy (NE) is a leading cause of neonatal mortality and lifetime neurological disability. The earlier the risk of NE can be assessed, the more effective interventions can be in preventing adverse outcomes. Existing studies that focus on intrapartum risk factors do not provide the early prognostic forecasting necessary to prepare healthcare professionals to intervene early in a high-risk NE case. This work used maternal data in a supervised machine learning framework to predict NE events. Specifically, we 1) collected the electronic medical records (EMRs) for 104 NE newborns and 31,054 non-NE newborns and their mothers, 2) trained and tested a regularized logistic regression on imbalanced and high-dimensional EMR data, and 3) discerned important features that could be possible risk factors. The learned model offers prenatal predictions of NE cases with an average area under the receiving operator characteristic curve (AUC) of 87% and identified the most important predictors.</description><issn>2153-4063</issn><issn>2153-4063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkF1LwzAYhYMobsz9BcmlN4Wk-Wh6I8jcnLCp-HFd0vTtFmmTmnTC_r0Vp8xz875wDs-Bc4LGKRUs4USy06N_hKYxvpNBnMtc8HM0SnOlFMn5GL08Bais6a3b4AfwTve6wXNnoNvqxne63-7xIvgWr3UPwQ3m7RDB1uF5A6YP3lmD19-IwXoG40MVL9BZrZsI08OdoLfF_HW2TFaPd_ezm1XS0UGJEKzmnJdQZ0xKlpPSUCozxkCXKiU8UzQFRUsQJoVaKapqRY3MK1aB4RlhE3T9w-12ZQuVAdcH3RRdsK0O-8JrW_x3nN0WG_9ZiFxSxegAuDoAgv_YQeyL1kYDTaMd-F0sUiJYqljG1BC9PO76K_ldkn0B2_5xsg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Li, Thomas</creator><creator>Gao, Cheng</creator><creator>Yan, Chao</creator><creator>Osmundson, Sarah</creator><creator>Malin, Bradley A</creator><creator>Chen, You</creator><general>American Medical Informatics Association</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2018</creationdate><title>Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records</title><author>Li, Thomas ; Gao, Cheng ; Yan, Chao ; Osmundson, Sarah ; Malin, Bradley A ; Chen, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1111-553f444bef7366390bc116733eab82047812e81be5c2ef8818f81c69d3dec4703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Li, Thomas</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Osmundson, Sarah</creatorcontrib><creatorcontrib>Malin, Bradley A</creatorcontrib><creatorcontrib>Chen, You</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA Summits on Translational Science proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Thomas</au><au>Gao, Cheng</au><au>Yan, Chao</au><au>Osmundson, Sarah</au><au>Malin, Bradley A</au><au>Chen, You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records</atitle><jtitle>AMIA Summits on Translational Science proceedings</jtitle><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><date>2018</date><risdate>2018</risdate><volume>2017</volume><spage>359</spage><epage>368</epage><pages>359-368</pages><issn>2153-4063</issn><eissn>2153-4063</eissn><abstract>Neonatal encephalopathy (NE) is a leading cause of neonatal mortality and lifetime neurological disability. The earlier the risk of NE can be assessed, the more effective interventions can be in preventing adverse outcomes. Existing studies that focus on intrapartum risk factors do not provide the early prognostic forecasting necessary to prepare healthcare professionals to intervene early in a high-risk NE case. This work used maternal data in a supervised machine learning framework to predict NE events. Specifically, we 1) collected the electronic medical records (EMRs) for 104 NE newborns and 31,054 non-NE newborns and their mothers, 2) trained and tested a regularized logistic regression on imbalanced and high-dimensional EMR data, and 3) discerned important features that could be possible risk factors. The learned model offers prenatal predictions of NE cases with an average area under the receiving operator characteristic curve (AUC) of 87% and identified the most important predictors.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>29888094</pmid><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2153-4063 |
ispartof | AMIA Summits on Translational Science proceedings, 2018, Vol.2017, p.359-368 |
issn | 2153-4063 2153-4063 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5961831 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
title | Predicting Neonatal Encephalopathy From Maternal Data in Electronic Medical Records |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Neonatal%20Encephalopathy%20From%20Maternal%20Data%20in%20Electronic%20Medical%20Records&rft.jtitle=AMIA%20Summits%20on%20Translational%20Science%20proceedings&rft.au=Li,%20Thomas&rft.date=2018&rft.volume=2017&rft.spage=359&rft.epage=368&rft.pages=359-368&rft.issn=2153-4063&rft.eissn=2153-4063&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2053283738%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2053283738&rft_id=info:pmid/29888094&rfr_iscdi=true |