High-order fractal states in graphene superlattices

Graphene superlattices were shown to exhibit high-temperature quantum oscillations due to periodic emergence of delocalized Bloch states in high magnetic fields such that unit fractions of the flux quantum pierce a superlattice unit cell. Under these conditions, semiclassical electron trajectories b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2018-05, Vol.115 (20), p.5135-5139
Hauptverfasser: Kumar, R. Krishna, Mishchenko, A., Chen, X., Pezzini, S., Auton, G. H., Ponomarenko, L. A., Zeitler, U., Eaves, L., Fal’ko, V. I., Geim, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5139
container_issue 20
container_start_page 5135
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Kumar, R. Krishna
Mishchenko, A.
Chen, X.
Pezzini, S.
Auton, G. H.
Ponomarenko, L. A.
Zeitler, U.
Eaves, L.
Fal’ko, V. I.
Geim, A. K.
description Graphene superlattices were shown to exhibit high-temperature quantum oscillations due to periodic emergence of delocalized Bloch states in high magnetic fields such that unit fractions of the flux quantum pierce a superlattice unit cell. Under these conditions, semiclassical electron trajectories become straight again, similar to the case of zero magnetic field. Here, we report magnetotransport measurements that reveal second-, third-, and fourth-order magnetic Bloch states at high electron densities and temperatures above 100 K. The recurrence of these states creates a fractal pattern intimately related to the origin of Hofstadter butterflies. The hierarchy of the fractal states is determined by the width of magnetic minibands, in qualitative agreement with our band-structure calculations.
doi_str_mv 10.1073/pnas.1804572115
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5960333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26509496</jstor_id><sourcerecordid>26509496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-e6c892a0eb6199a6f4bc95d6f7f663a1e05d2e0b93088b984fbd37038924813a3</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMouq6ePSkFL16qkyZNMxdBxC9Y8KLnkLbT3S7dtiap4H9vl10_5zKH-c1j3jzGTjhccsjEVd9af8k1yDRLOE932IQD8lhJhF02AUiyWMtEHrBD75cAgKmGfXaQYMYTncGEicd6vog7V5KLKmeLYJvIBxvIR3UbzZ3tF9RS5IeeXGNDqAvyR2yvso2n422fstf7u5fbx3j2_PB0ezOLixQwxKQKjYkFyhVHtKqSeYFpqaqsUkpYTpCWCUGOArTOUcsqL0UGYlySmgsrpux6o9sP-YrKgtrgbGN6V6-s-zCdrc3fSVsvzLx7NykqEGNN2cVWwHVvA_lgVrUvqGlsS93gTbKmNNdSj-j5P3TZDa4d7Y0UImYo-VrwakMVrvPeUfV9DAezDsSsAzE_gYwbZ789fPNfCYzA6QZY-tC5n7kafyhRiU9lVZAj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099979413</pqid></control><display><type>article</type><title>High-order fractal states in graphene superlattices</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kumar, R. Krishna ; Mishchenko, A. ; Chen, X. ; Pezzini, S. ; Auton, G. H. ; Ponomarenko, L. A. ; Zeitler, U. ; Eaves, L. ; Fal’ko, V. I. ; Geim, A. K.</creator><creatorcontrib>Kumar, R. Krishna ; Mishchenko, A. ; Chen, X. ; Pezzini, S. ; Auton, G. H. ; Ponomarenko, L. A. ; Zeitler, U. ; Eaves, L. ; Fal’ko, V. I. ; Geim, A. K.</creatorcontrib><description>Graphene superlattices were shown to exhibit high-temperature quantum oscillations due to periodic emergence of delocalized Bloch states in high magnetic fields such that unit fractions of the flux quantum pierce a superlattice unit cell. Under these conditions, semiclassical electron trajectories become straight again, similar to the case of zero magnetic field. Here, we report magnetotransport measurements that reveal second-, third-, and fourth-order magnetic Bloch states at high electron densities and temperatures above 100 K. The recurrence of these states creates a fractal pattern intimately related to the origin of Hofstadter butterflies. The hierarchy of the fractal states is determined by the width of magnetic minibands, in qualitative agreement with our band-structure calculations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1804572115</identifier><identifier>PMID: 29712870</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Carbon ; Crystal lattices ; Electron trajectories ; Fractals ; Graphene ; High temperature ; Magnetic fields ; Magnetism ; Oscillations ; Physical Sciences ; Qualitative analysis ; Superlattices ; Unit cell</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-05, Vol.115 (20), p.5135-5139</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences May 15, 2018</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-e6c892a0eb6199a6f4bc95d6f7f663a1e05d2e0b93088b984fbd37038924813a3</citedby><cites>FETCH-LOGICAL-c509t-e6c892a0eb6199a6f4bc95d6f7f663a1e05d2e0b93088b984fbd37038924813a3</cites><orcidid>0000-0003-2861-8331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26509496$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26509496$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29712870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumar, R. Krishna</creatorcontrib><creatorcontrib>Mishchenko, A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Pezzini, S.</creatorcontrib><creatorcontrib>Auton, G. H.</creatorcontrib><creatorcontrib>Ponomarenko, L. A.</creatorcontrib><creatorcontrib>Zeitler, U.</creatorcontrib><creatorcontrib>Eaves, L.</creatorcontrib><creatorcontrib>Fal’ko, V. I.</creatorcontrib><creatorcontrib>Geim, A. K.</creatorcontrib><title>High-order fractal states in graphene superlattices</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Graphene superlattices were shown to exhibit high-temperature quantum oscillations due to periodic emergence of delocalized Bloch states in high magnetic fields such that unit fractions of the flux quantum pierce a superlattice unit cell. Under these conditions, semiclassical electron trajectories become straight again, similar to the case of zero magnetic field. Here, we report magnetotransport measurements that reveal second-, third-, and fourth-order magnetic Bloch states at high electron densities and temperatures above 100 K. The recurrence of these states creates a fractal pattern intimately related to the origin of Hofstadter butterflies. The hierarchy of the fractal states is determined by the width of magnetic minibands, in qualitative agreement with our band-structure calculations.</description><subject>Carbon</subject><subject>Crystal lattices</subject><subject>Electron trajectories</subject><subject>Fractals</subject><subject>Graphene</subject><subject>High temperature</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Oscillations</subject><subject>Physical Sciences</subject><subject>Qualitative analysis</subject><subject>Superlattices</subject><subject>Unit cell</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LxDAQxYMouq6ePSkFL16qkyZNMxdBxC9Y8KLnkLbT3S7dtiap4H9vl10_5zKH-c1j3jzGTjhccsjEVd9af8k1yDRLOE932IQD8lhJhF02AUiyWMtEHrBD75cAgKmGfXaQYMYTncGEicd6vog7V5KLKmeLYJvIBxvIR3UbzZ3tF9RS5IeeXGNDqAvyR2yvso2n422fstf7u5fbx3j2_PB0ezOLixQwxKQKjYkFyhVHtKqSeYFpqaqsUkpYTpCWCUGOArTOUcsqL0UGYlySmgsrpux6o9sP-YrKgtrgbGN6V6-s-zCdrc3fSVsvzLx7NykqEGNN2cVWwHVvA_lgVrUvqGlsS93gTbKmNNdSj-j5P3TZDa4d7Y0UImYo-VrwakMVrvPeUfV9DAezDsSsAzE_gYwbZ789fPNfCYzA6QZY-tC5n7kafyhRiU9lVZAj</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Kumar, R. Krishna</creator><creator>Mishchenko, A.</creator><creator>Chen, X.</creator><creator>Pezzini, S.</creator><creator>Auton, G. H.</creator><creator>Ponomarenko, L. A.</creator><creator>Zeitler, U.</creator><creator>Eaves, L.</creator><creator>Fal’ko, V. I.</creator><creator>Geim, A. K.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid></search><sort><creationdate>20180515</creationdate><title>High-order fractal states in graphene superlattices</title><author>Kumar, R. Krishna ; Mishchenko, A. ; Chen, X. ; Pezzini, S. ; Auton, G. H. ; Ponomarenko, L. A. ; Zeitler, U. ; Eaves, L. ; Fal’ko, V. I. ; Geim, A. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-e6c892a0eb6199a6f4bc95d6f7f663a1e05d2e0b93088b984fbd37038924813a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon</topic><topic>Crystal lattices</topic><topic>Electron trajectories</topic><topic>Fractals</topic><topic>Graphene</topic><topic>High temperature</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Oscillations</topic><topic>Physical Sciences</topic><topic>Qualitative analysis</topic><topic>Superlattices</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, R. Krishna</creatorcontrib><creatorcontrib>Mishchenko, A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Pezzini, S.</creatorcontrib><creatorcontrib>Auton, G. H.</creatorcontrib><creatorcontrib>Ponomarenko, L. A.</creatorcontrib><creatorcontrib>Zeitler, U.</creatorcontrib><creatorcontrib>Eaves, L.</creatorcontrib><creatorcontrib>Fal’ko, V. I.</creatorcontrib><creatorcontrib>Geim, A. K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, R. Krishna</au><au>Mishchenko, A.</au><au>Chen, X.</au><au>Pezzini, S.</au><au>Auton, G. H.</au><au>Ponomarenko, L. A.</au><au>Zeitler, U.</au><au>Eaves, L.</au><au>Fal’ko, V. I.</au><au>Geim, A. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-order fractal states in graphene superlattices</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-05-15</date><risdate>2018</risdate><volume>115</volume><issue>20</issue><spage>5135</spage><epage>5139</epage><pages>5135-5139</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Graphene superlattices were shown to exhibit high-temperature quantum oscillations due to periodic emergence of delocalized Bloch states in high magnetic fields such that unit fractions of the flux quantum pierce a superlattice unit cell. Under these conditions, semiclassical electron trajectories become straight again, similar to the case of zero magnetic field. Here, we report magnetotransport measurements that reveal second-, third-, and fourth-order magnetic Bloch states at high electron densities and temperatures above 100 K. The recurrence of these states creates a fractal pattern intimately related to the origin of Hofstadter butterflies. The hierarchy of the fractal states is determined by the width of magnetic minibands, in qualitative agreement with our band-structure calculations.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29712870</pmid><doi>10.1073/pnas.1804572115</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-05, Vol.115 (20), p.5135-5139
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5960333
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Carbon
Crystal lattices
Electron trajectories
Fractals
Graphene
High temperature
Magnetic fields
Magnetism
Oscillations
Physical Sciences
Qualitative analysis
Superlattices
Unit cell
title High-order fractal states in graphene superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A09%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-order%20fractal%20states%20in%20graphene%20superlattices&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kumar,%20R.%20Krishna&rft.date=2018-05-15&rft.volume=115&rft.issue=20&rft.spage=5135&rft.epage=5139&rft.pages=5135-5139&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1804572115&rft_dat=%3Cjstor_pubme%3E26509496%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099979413&rft_id=info:pmid/29712870&rft_jstor_id=26509496&rfr_iscdi=true