How does blood regulate cerebral temperatures during hypothermia?
Macro-modeling of cerebral blood flow can help determine the impact of thermal intervention during instances of head trauma to mitigate tissue damage. This work presents a bioheat model using a 3D fluid-porous domain coupled with intersecting 1D arterial and venous vessel trees. This combined vascul...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2018-05, Vol.8 (1), p.7877-10, Article 7877 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 7877 |
container_title | Scientific reports |
container_volume | 8 |
creator | Blowers, Stephen Marshall, Ian Thrippleton, Michael Andrews, Peter Harris, Bridget Bethune, Iain Valluri, Prashant |
description | Macro-modeling of cerebral blood flow can help determine the impact of thermal intervention during instances of head trauma to mitigate tissue damage. This work presents a bioheat model using a 3D fluid-porous domain coupled with intersecting 1D arterial and venous vessel trees. This combined vascular porous (VaPor) model resolves both cerebral blood flow and energy equations, including heat generated by metabolism, using vasculature extracted from MRI data and is extended using a tree generation algorithm. Counter-current flows are expected to increase thermal transfer within the brain and are enforced using either the vascular structure or flow reversal, represented by a flow reversal constant,
C
R
. These methods exhibit larger average brain cooling (from 0.56 °
C
± |
doi_str_mv | 10.1038/s41598-018-26063-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5959945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2041626995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-eec67fdf8782489e71e9bed931bd935552dfb50cb54c395cdfa7e75f5581a7083</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMoKuof8CAFL16qSZppmosii18geNFzSNPpbqVtatIq_nuzrt8Hc5gE5pk3M_MSss_oMaNZcRIEA1WklBUpz2mepXKNbHMqIOUZ5-s_3ltkL4RHGg9wJZjaJFtcSSmZFNvk_Nq9JJXDkJStc1XicT61ZsTEosfSmzYZsRvQm3HyEaom3_TzZPE6uHGBvmvM2S7ZqE0bcO_j3iEPlxf3s-v09u7qZnZ-m1oQdEwRbS7rqi5kwUWhUDJUJVYqY2UMAMCrugRqSxA2U2Cr2kiUUAMUzEhaZDvkdKU7TGWHlcV-jO3pwTed8a_amUb_zvTNQs_dswYFSgmIAkcfAt49TRhG3TXBYtuaHt0UdFwYy3mu1BI9_IM-usn3cbx3imUUpIgUX1HWuxA81l_NMKqXJumVSTqapN9N0jIWHfwc46vk05IIZCsgDMtdo__--x_ZN0EbncM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041130574</pqid></control><display><type>article</type><title>How does blood regulate cerebral temperatures during hypothermia?</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Blowers, Stephen ; Marshall, Ian ; Thrippleton, Michael ; Andrews, Peter ; Harris, Bridget ; Bethune, Iain ; Valluri, Prashant</creator><creatorcontrib>Blowers, Stephen ; Marshall, Ian ; Thrippleton, Michael ; Andrews, Peter ; Harris, Bridget ; Bethune, Iain ; Valluri, Prashant</creatorcontrib><description>Macro-modeling of cerebral blood flow can help determine the impact of thermal intervention during instances of head trauma to mitigate tissue damage. This work presents a bioheat model using a 3D fluid-porous domain coupled with intersecting 1D arterial and venous vessel trees. This combined vascular porous (VaPor) model resolves both cerebral blood flow and energy equations, including heat generated by metabolism, using vasculature extracted from MRI data and is extended using a tree generation algorithm. Counter-current flows are expected to increase thermal transfer within the brain and are enforced using either the vascular structure or flow reversal, represented by a flow reversal constant,
C
R
. These methods exhibit larger average brain cooling (from 0.56 °
C
± <0.01 °
C
to 0.58 °
C
± <0.01 °
C
) compared with previous models (0.39 °
C
) when scalp temperature is reduced. An greater reduction in core brain temperature is observed (from 0.29 °
C
± <0.01 °
C
to 0.45 °
C
± <0.01 °
C
) compared to previous models (0.11 °
C
) due to the inclusion of counter-current cooling effects. The VaPor model also predicts that a hypothermic average temperature (<36 °
C
) can be reached in core regions of neonatal models using scalp cooling alone.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-018-26063-7</identifier><identifier>PMID: 29777174</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 692/4019 ; Blood flow ; Brain injury ; Cerebral blood flow ; Cooling ; Humanities and Social Sciences ; Hypothermia ; Magnetic resonance imaging ; Mathematical models ; multidisciplinary ; Neonates ; Scalp ; Science ; Science (multidisciplinary) ; Temperature effects ; Vapors</subject><ispartof>Scientific reports, 2018-05, Vol.8 (1), p.7877-10, Article 7877</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-eec67fdf8782489e71e9bed931bd935552dfb50cb54c395cdfa7e75f5581a7083</citedby><cites>FETCH-LOGICAL-c540t-eec67fdf8782489e71e9bed931bd935552dfb50cb54c395cdfa7e75f5581a7083</cites><orcidid>0000-0003-0713-2084 ; 0000-0003-4917-8283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959945/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5959945/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29777174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blowers, Stephen</creatorcontrib><creatorcontrib>Marshall, Ian</creatorcontrib><creatorcontrib>Thrippleton, Michael</creatorcontrib><creatorcontrib>Andrews, Peter</creatorcontrib><creatorcontrib>Harris, Bridget</creatorcontrib><creatorcontrib>Bethune, Iain</creatorcontrib><creatorcontrib>Valluri, Prashant</creatorcontrib><title>How does blood regulate cerebral temperatures during hypothermia?</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Macro-modeling of cerebral blood flow can help determine the impact of thermal intervention during instances of head trauma to mitigate tissue damage. This work presents a bioheat model using a 3D fluid-porous domain coupled with intersecting 1D arterial and venous vessel trees. This combined vascular porous (VaPor) model resolves both cerebral blood flow and energy equations, including heat generated by metabolism, using vasculature extracted from MRI data and is extended using a tree generation algorithm. Counter-current flows are expected to increase thermal transfer within the brain and are enforced using either the vascular structure or flow reversal, represented by a flow reversal constant,
C
R
. These methods exhibit larger average brain cooling (from 0.56 °
C
± <0.01 °
C
to 0.58 °
C
± <0.01 °
C
) compared with previous models (0.39 °
C
) when scalp temperature is reduced. An greater reduction in core brain temperature is observed (from 0.29 °
C
± <0.01 °
C
to 0.45 °
C
± <0.01 °
C
) compared to previous models (0.11 °
C
) due to the inclusion of counter-current cooling effects. The VaPor model also predicts that a hypothermic average temperature (<36 °
C
) can be reached in core regions of neonatal models using scalp cooling alone.</description><subject>639/166/985</subject><subject>692/4019</subject><subject>Blood flow</subject><subject>Brain injury</subject><subject>Cerebral blood flow</subject><subject>Cooling</subject><subject>Humanities and Social Sciences</subject><subject>Hypothermia</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Neonates</subject><subject>Scalp</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature effects</subject><subject>Vapors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1LxDAQhoMoKuof8CAFL16qSZppmosii18geNFzSNPpbqVtatIq_nuzrt8Hc5gE5pk3M_MSss_oMaNZcRIEA1WklBUpz2mepXKNbHMqIOUZ5-s_3ltkL4RHGg9wJZjaJFtcSSmZFNvk_Nq9JJXDkJStc1XicT61ZsTEosfSmzYZsRvQm3HyEaom3_TzZPE6uHGBvmvM2S7ZqE0bcO_j3iEPlxf3s-v09u7qZnZ-m1oQdEwRbS7rqi5kwUWhUDJUJVYqY2UMAMCrugRqSxA2U2Cr2kiUUAMUzEhaZDvkdKU7TGWHlcV-jO3pwTed8a_amUb_zvTNQs_dswYFSgmIAkcfAt49TRhG3TXBYtuaHt0UdFwYy3mu1BI9_IM-usn3cbx3imUUpIgUX1HWuxA81l_NMKqXJumVSTqapN9N0jIWHfwc46vk05IIZCsgDMtdo__--x_ZN0EbncM</recordid><startdate>20180518</startdate><enddate>20180518</enddate><creator>Blowers, Stephen</creator><creator>Marshall, Ian</creator><creator>Thrippleton, Michael</creator><creator>Andrews, Peter</creator><creator>Harris, Bridget</creator><creator>Bethune, Iain</creator><creator>Valluri, Prashant</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0713-2084</orcidid><orcidid>https://orcid.org/0000-0003-4917-8283</orcidid></search><sort><creationdate>20180518</creationdate><title>How does blood regulate cerebral temperatures during hypothermia?</title><author>Blowers, Stephen ; Marshall, Ian ; Thrippleton, Michael ; Andrews, Peter ; Harris, Bridget ; Bethune, Iain ; Valluri, Prashant</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-eec67fdf8782489e71e9bed931bd935552dfb50cb54c395cdfa7e75f5581a7083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/166/985</topic><topic>692/4019</topic><topic>Blood flow</topic><topic>Brain injury</topic><topic>Cerebral blood flow</topic><topic>Cooling</topic><topic>Humanities and Social Sciences</topic><topic>Hypothermia</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Neonates</topic><topic>Scalp</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature effects</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blowers, Stephen</creatorcontrib><creatorcontrib>Marshall, Ian</creatorcontrib><creatorcontrib>Thrippleton, Michael</creatorcontrib><creatorcontrib>Andrews, Peter</creatorcontrib><creatorcontrib>Harris, Bridget</creatorcontrib><creatorcontrib>Bethune, Iain</creatorcontrib><creatorcontrib>Valluri, Prashant</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blowers, Stephen</au><au>Marshall, Ian</au><au>Thrippleton, Michael</au><au>Andrews, Peter</au><au>Harris, Bridget</au><au>Bethune, Iain</au><au>Valluri, Prashant</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How does blood regulate cerebral temperatures during hypothermia?</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2018-05-18</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>7877</spage><epage>10</epage><pages>7877-10</pages><artnum>7877</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Macro-modeling of cerebral blood flow can help determine the impact of thermal intervention during instances of head trauma to mitigate tissue damage. This work presents a bioheat model using a 3D fluid-porous domain coupled with intersecting 1D arterial and venous vessel trees. This combined vascular porous (VaPor) model resolves both cerebral blood flow and energy equations, including heat generated by metabolism, using vasculature extracted from MRI data and is extended using a tree generation algorithm. Counter-current flows are expected to increase thermal transfer within the brain and are enforced using either the vascular structure or flow reversal, represented by a flow reversal constant,
C
R
. These methods exhibit larger average brain cooling (from 0.56 °
C
± <0.01 °
C
to 0.58 °
C
± <0.01 °
C
) compared with previous models (0.39 °
C
) when scalp temperature is reduced. An greater reduction in core brain temperature is observed (from 0.29 °
C
± <0.01 °
C
to 0.45 °
C
± <0.01 °
C
) compared to previous models (0.11 °
C
) due to the inclusion of counter-current cooling effects. The VaPor model also predicts that a hypothermic average temperature (<36 °
C
) can be reached in core regions of neonatal models using scalp cooling alone.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29777174</pmid><doi>10.1038/s41598-018-26063-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0713-2084</orcidid><orcidid>https://orcid.org/0000-0003-4917-8283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2018-05, Vol.8 (1), p.7877-10, Article 7877 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5959945 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/166/985 692/4019 Blood flow Brain injury Cerebral blood flow Cooling Humanities and Social Sciences Hypothermia Magnetic resonance imaging Mathematical models multidisciplinary Neonates Scalp Science Science (multidisciplinary) Temperature effects Vapors |
title | How does blood regulate cerebral temperatures during hypothermia? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20does%20blood%20regulate%20cerebral%20temperatures%20during%20hypothermia?&rft.jtitle=Scientific%20reports&rft.au=Blowers,%20Stephen&rft.date=2018-05-18&rft.volume=8&rft.issue=1&rft.spage=7877&rft.epage=10&rft.pages=7877-10&rft.artnum=7877&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-018-26063-7&rft_dat=%3Cproquest_pubme%3E2041626995%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041130574&rft_id=info:pmid/29777174&rfr_iscdi=true |