Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1

The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2017-07, Vol.67 (1), p.139-147.e2
Hauptverfasser: Nishimasu, Hiroshi, Yamano, Takashi, Gao, Linyi, Zhang, Feng, Ishitani, Ryuichiro, Nureki, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147.e2
container_issue 1
container_start_page 139
container_title Molecular cell
container_volume 67
creator Nishimasu, Hiroshi
Yamano, Takashi
Gao, Linyi
Zhang, Feng
Ishitani, Ryuichiro
Nureki, Osamu
description The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM), thereby expanding the target range of Cpf1-mediated genome editing. Whereas wild-type AsCpf1 recognizes the TTTV PAM, the RVR (S542R/K548V/N552R) and RR (S542R/K607R) variants can efficiently recognize the TATV and TYCV PAMs, respectively. However, their PAM recognition mechanisms remained unknown. Here we present the 2.0 Å resolution crystal structures of the RVR and RR variants bound to a crRNA and its target DNA. The structures revealed that the RVR and RR variants primarily recognize the PAM-complementary nucleotides via the substituted residues. Our high-resolution structures delineated the altered PAM recognition mechanisms of the AsCpf1 variants, providing a basis for the further engineering of CRISPR-Cpf1. [Display omitted] •Crystal structures of the AsCpf1 RVR and RR variants at 2.0 Å resolution•Structural basis for the TATV PAM recognition by the RVR variant•Structural basis for the TYCV PAM recognition by the RR variant Variants of AsCpf1 with altered PAM specificities have been derived. Nishimasu et al. determined the high-resolution crystal structures of two of these variants bound to a crRNA and its target DNA, thereby explaining their altered PAM specificities.
doi_str_mv 10.1016/j.molcel.2017.04.019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5957533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276517302757</els_id><sourcerecordid>2000438381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-46c5893cb1bd7153526e32cdf5c066890af1dbfcb3d273f588e3d0abd084a933</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCIlsI_QChHLgn-TnxBWlaFFhVRbXu3HHuy9SobL7ZTqf8eb3cpcIHTjDRv3rw3D6G3BDcEE_lh02zDaGFsKCZtg3mDiXqGTglWbc2J5M-PPW2lOEGvUtpgTLjo1Et0QjuhSidP0debHGeb52jG6pNJPlVDiFW-g2oxZojgquvFt2oFNqwnn32Yqv6hOp_WfoLH6XJ1eXO9qpe7gbxGLwYzJnhzrGfo9vP57fKivvr-5XK5uKqtkDTXXNpymtme9K4lggkqgVHrBmGxlJ3CZiCuH2zPHG3ZILoOmMOmd7jjRjF2hj4eaHdzvwVnYcpFvN5FvzXxQQfj9d-Tyd_pdbjXxXIr2J7g_ZEghh8zpKy3PpVHjmaCMCdNMcacdawj_4USVUQxypUqUH6A2hhSijA8KSJY7wPTG30ITO8D05jrElhZe_enm6elXwn9tgvlpfceok7Ww2TB-Qg2axf8vy_8BBedqHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908432499</pqid></control><display><type>article</type><title>Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Nishimasu, Hiroshi ; Yamano, Takashi ; Gao, Linyi ; Zhang, Feng ; Ishitani, Ryuichiro ; Nureki, Osamu</creator><creatorcontrib>Nishimasu, Hiroshi ; Yamano, Takashi ; Gao, Linyi ; Zhang, Feng ; Ishitani, Ryuichiro ; Nureki, Osamu</creatorcontrib><description>The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM), thereby expanding the target range of Cpf1-mediated genome editing. Whereas wild-type AsCpf1 recognizes the TTTV PAM, the RVR (S542R/K548V/N552R) and RR (S542R/K607R) variants can efficiently recognize the TATV and TYCV PAMs, respectively. However, their PAM recognition mechanisms remained unknown. Here we present the 2.0 Å resolution crystal structures of the RVR and RR variants bound to a crRNA and its target DNA. The structures revealed that the RVR and RR variants primarily recognize the PAM-complementary nucleotides via the substituted residues. Our high-resolution structures delineated the altered PAM recognition mechanisms of the AsCpf1 variants, providing a basis for the further engineering of CRISPR-Cpf1. [Display omitted] •Crystal structures of the AsCpf1 RVR and RR variants at 2.0 Å resolution•Structural basis for the TATV PAM recognition by the RVR variant•Structural basis for the TYCV PAM recognition by the RR variant Variants of AsCpf1 with altered PAM specificities have been derived. Nishimasu et al. determined the high-resolution crystal structures of two of these variants bound to a crRNA and its target DNA, thereby explaining their altered PAM specificities.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2017.04.019</identifier><identifier>PMID: 28595896</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acidaminococcus ; Acidaminococcus - enzymology ; Acidaminococcus - genetics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cas12a ; Clustered Regularly Interspaced Short Palindromic Repeats ; Cpf1 ; CRISPR-Associated Proteins - chemistry ; CRISPR-Associated Proteins - genetics ; CRISPR-Associated Proteins - metabolism ; CRISPR-Cas system ; CRISPR-Cas Systems ; crystal structure ; DNA ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; engineering ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Gene Editing ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Nucleic Acid Heteroduplexes ; nucleotide sequences ; nucleotides ; Protein Binding ; Protein Conformation ; protospacer adjacent motif ; RNA ; RNA - chemistry ; RNA - genetics ; RNA - metabolism ; Structure-Activity Relationship</subject><ispartof>Molecular cell, 2017-07, Vol.67 (1), p.139-147.e2</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-46c5893cb1bd7153526e32cdf5c066890af1dbfcb3d273f588e3d0abd084a933</citedby><cites>FETCH-LOGICAL-c562t-46c5893cb1bd7153526e32cdf5c066890af1dbfcb3d273f588e3d0abd084a933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276517302757$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28595896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishimasu, Hiroshi</creatorcontrib><creatorcontrib>Yamano, Takashi</creatorcontrib><creatorcontrib>Gao, Linyi</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Ishitani, Ryuichiro</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><title>Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM), thereby expanding the target range of Cpf1-mediated genome editing. Whereas wild-type AsCpf1 recognizes the TTTV PAM, the RVR (S542R/K548V/N552R) and RR (S542R/K607R) variants can efficiently recognize the TATV and TYCV PAMs, respectively. However, their PAM recognition mechanisms remained unknown. Here we present the 2.0 Å resolution crystal structures of the RVR and RR variants bound to a crRNA and its target DNA. The structures revealed that the RVR and RR variants primarily recognize the PAM-complementary nucleotides via the substituted residues. Our high-resolution structures delineated the altered PAM recognition mechanisms of the AsCpf1 variants, providing a basis for the further engineering of CRISPR-Cpf1. [Display omitted] •Crystal structures of the AsCpf1 RVR and RR variants at 2.0 Å resolution•Structural basis for the TATV PAM recognition by the RVR variant•Structural basis for the TYCV PAM recognition by the RR variant Variants of AsCpf1 with altered PAM specificities have been derived. Nishimasu et al. determined the high-resolution crystal structures of two of these variants bound to a crRNA and its target DNA, thereby explaining their altered PAM specificities.</description><subject>Acidaminococcus</subject><subject>Acidaminococcus - enzymology</subject><subject>Acidaminococcus - genetics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cas12a</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>Cpf1</subject><subject>CRISPR-Associated Proteins - chemistry</subject><subject>CRISPR-Associated Proteins - genetics</subject><subject>CRISPR-Associated Proteins - metabolism</subject><subject>CRISPR-Cas system</subject><subject>CRISPR-Cas Systems</subject><subject>crystal structure</subject><subject>DNA</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>engineering</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Gene Editing</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Heteroduplexes</subject><subject>nucleotide sequences</subject><subject>nucleotides</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>protospacer adjacent motif</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA - genetics</subject><subject>RNA - metabolism</subject><subject>Structure-Activity Relationship</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAQtRCIlsI_QChHLgn-TnxBWlaFFhVRbXu3HHuy9SobL7ZTqf8eb3cpcIHTjDRv3rw3D6G3BDcEE_lh02zDaGFsKCZtg3mDiXqGTglWbc2J5M-PPW2lOEGvUtpgTLjo1Et0QjuhSidP0debHGeb52jG6pNJPlVDiFW-g2oxZojgquvFt2oFNqwnn32Yqv6hOp_WfoLH6XJ1eXO9qpe7gbxGLwYzJnhzrGfo9vP57fKivvr-5XK5uKqtkDTXXNpymtme9K4lggkqgVHrBmGxlJ3CZiCuH2zPHG3ZILoOmMOmd7jjRjF2hj4eaHdzvwVnYcpFvN5FvzXxQQfj9d-Tyd_pdbjXxXIr2J7g_ZEghh8zpKy3PpVHjmaCMCdNMcacdawj_4USVUQxypUqUH6A2hhSijA8KSJY7wPTG30ITO8D05jrElhZe_enm6elXwn9tgvlpfceok7Ww2TB-Qg2axf8vy_8BBedqHw</recordid><startdate>20170706</startdate><enddate>20170706</enddate><creator>Nishimasu, Hiroshi</creator><creator>Yamano, Takashi</creator><creator>Gao, Linyi</creator><creator>Zhang, Feng</creator><creator>Ishitani, Ryuichiro</creator><creator>Nureki, Osamu</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20170706</creationdate><title>Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1</title><author>Nishimasu, Hiroshi ; Yamano, Takashi ; Gao, Linyi ; Zhang, Feng ; Ishitani, Ryuichiro ; Nureki, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-46c5893cb1bd7153526e32cdf5c066890af1dbfcb3d273f588e3d0abd084a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidaminococcus</topic><topic>Acidaminococcus - enzymology</topic><topic>Acidaminococcus - genetics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cas12a</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>Cpf1</topic><topic>CRISPR-Associated Proteins - chemistry</topic><topic>CRISPR-Associated Proteins - genetics</topic><topic>CRISPR-Associated Proteins - metabolism</topic><topic>CRISPR-Cas system</topic><topic>CRISPR-Cas Systems</topic><topic>crystal structure</topic><topic>DNA</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>engineering</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Gene Editing</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Heteroduplexes</topic><topic>nucleotide sequences</topic><topic>nucleotides</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>protospacer adjacent motif</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA - genetics</topic><topic>RNA - metabolism</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimasu, Hiroshi</creatorcontrib><creatorcontrib>Yamano, Takashi</creatorcontrib><creatorcontrib>Gao, Linyi</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Ishitani, Ryuichiro</creatorcontrib><creatorcontrib>Nureki, Osamu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimasu, Hiroshi</au><au>Yamano, Takashi</au><au>Gao, Linyi</au><au>Zhang, Feng</au><au>Ishitani, Ryuichiro</au><au>Nureki, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2017-07-06</date><risdate>2017</risdate><volume>67</volume><issue>1</issue><spage>139</spage><epage>147.e2</epage><pages>139-147.e2</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM), thereby expanding the target range of Cpf1-mediated genome editing. Whereas wild-type AsCpf1 recognizes the TTTV PAM, the RVR (S542R/K548V/N552R) and RR (S542R/K607R) variants can efficiently recognize the TATV and TYCV PAMs, respectively. However, their PAM recognition mechanisms remained unknown. Here we present the 2.0 Å resolution crystal structures of the RVR and RR variants bound to a crRNA and its target DNA. The structures revealed that the RVR and RR variants primarily recognize the PAM-complementary nucleotides via the substituted residues. Our high-resolution structures delineated the altered PAM recognition mechanisms of the AsCpf1 variants, providing a basis for the further engineering of CRISPR-Cpf1. [Display omitted] •Crystal structures of the AsCpf1 RVR and RR variants at 2.0 Å resolution•Structural basis for the TATV PAM recognition by the RVR variant•Structural basis for the TYCV PAM recognition by the RR variant Variants of AsCpf1 with altered PAM specificities have been derived. Nishimasu et al. determined the high-resolution crystal structures of two of these variants bound to a crRNA and its target DNA, thereby explaining their altered PAM specificities.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28595896</pmid><doi>10.1016/j.molcel.2017.04.019</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2017-07, Vol.67 (1), p.139-147.e2
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5957533
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Acidaminococcus
Acidaminococcus - enzymology
Acidaminococcus - genetics
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cas12a
Clustered Regularly Interspaced Short Palindromic Repeats
Cpf1
CRISPR-Associated Proteins - chemistry
CRISPR-Associated Proteins - genetics
CRISPR-Associated Proteins - metabolism
CRISPR-Cas system
CRISPR-Cas Systems
crystal structure
DNA
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
engineering
Escherichia coli - enzymology
Escherichia coli - genetics
Gene Editing
Models, Molecular
Mutation
Nucleic Acid Conformation
Nucleic Acid Heteroduplexes
nucleotide sequences
nucleotides
Protein Binding
Protein Conformation
protospacer adjacent motif
RNA
RNA - chemistry
RNA - genetics
RNA - metabolism
Structure-Activity Relationship
title Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20for%20the%20Altered%20PAM%20Recognition%20by%20Engineered%20CRISPR-Cpf1&rft.jtitle=Molecular%20cell&rft.au=Nishimasu,%20Hiroshi&rft.date=2017-07-06&rft.volume=67&rft.issue=1&rft.spage=139&rft.epage=147.e2&rft.pages=139-147.e2&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2017.04.019&rft_dat=%3Cproquest_pubme%3E2000438381%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1908432499&rft_id=info:pmid/28595896&rft_els_id=S1097276517302757&rfr_iscdi=true