Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections
Recent literature has introduced (a) the network perspective to psychology and (b) collection of time series data to capture symptom fluctuations and other time varying factors in daily life. Combining these trends allows for the estimation of intraindividual network structures. We argue that these...
Gespeichert in:
Veröffentlicht in: | Clinical psychological science 2018-05, Vol.6 (3), p.416-427 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 427 |
---|---|
container_issue | 3 |
container_start_page | 416 |
container_title | Clinical psychological science |
container_volume | 6 |
creator | Epskamp, Sacha van Borkulo, Claudia D. van der Veen, Date C. Servaas, Michelle N. Isvoranu, Adela-Maria Riese, Harriëtte Cramer, Angélique O. J. |
description | Recent literature has introduced (a) the network perspective to psychology and (b) collection of time series data to capture symptom fluctuations and other time varying factors in daily life. Combining these trends allows for the estimation of intraindividual network structures. We argue that these networks can be directly applied in clinical research and practice as hypothesis generating structures. Two networks can be computed: a temporal network, in which one investigates if symptoms (or other relevant variables) predict one another over time, and a contemporaneous network, in which one investigates if symptoms predict one another in the same window of measurement. The contemporaneous network is a partial correlation network, which is emerging in the analysis of cross-sectional data but is not yet utilized in the analysis of time series data. We explain the importance of partial correlation networks and exemplify the network structures on time series data of a psychiatric patient. |
doi_str_mv | 10.1177/2167702617744325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5952299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_2167702617744325</sage_id><sourcerecordid>2046011726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-9e199f65de48297fa19c7078d5c25afc3468288fef33a246cfe28acefd97dada3</originalsourceid><addsrcrecordid>eNp1kc1PGzEQxa2KqiDgzgn5yGWp7d31Rw-VUMSXlNIc0rNl7HGysLGDvWkV_nocLY3aSvXFozdvnsf6IXRGySWlQnxmlAtBGC9109Ss_YCOdlIlSN0c7GvGD9Fpzk-kHEm5VPUndMiUJK2i8gj1M0g5BtN3r-DwAwy_YnrG36KDvgsL3AU8y1u7jGszLGMfF9sveL4EfL9axzSYYAFHjycxDLBTTIC4ydgEh-ej0O-aAezQxZBP0Edv-gyn7_cx-nFzPZ_cVdPvt_eTq2llW0KGSgFVyvPWQSOZEt5QZQUR0rWWtcbbuuGSSenB17VhDbcemDQWvFPCGWfqY_R1zF1vHlfgLIShbKLXqVuZtNXRdPrvTuiWehF_6la1jClVAi7eA1J82UAe9KrLFvp-_KBmpOGkQGC8WMlotSnmnMDvn6FE7zjpfzmVkfM_19sP_KZSDNVoyGYB-iluUgGU_x_4BqRwngo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046011726</pqid></control><display><type>article</type><title>Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections</title><source>SAGE Complete</source><creator>Epskamp, Sacha ; van Borkulo, Claudia D. ; van der Veen, Date C. ; Servaas, Michelle N. ; Isvoranu, Adela-Maria ; Riese, Harriëtte ; Cramer, Angélique O. J.</creator><creatorcontrib>Epskamp, Sacha ; van Borkulo, Claudia D. ; van der Veen, Date C. ; Servaas, Michelle N. ; Isvoranu, Adela-Maria ; Riese, Harriëtte ; Cramer, Angélique O. J.</creatorcontrib><description>Recent literature has introduced (a) the network perspective to psychology and (b) collection of time series data to capture symptom fluctuations and other time varying factors in daily life. Combining these trends allows for the estimation of intraindividual network structures. We argue that these networks can be directly applied in clinical research and practice as hypothesis generating structures. Two networks can be computed: a temporal network, in which one investigates if symptoms (or other relevant variables) predict one another over time, and a contemporaneous network, in which one investigates if symptoms predict one another in the same window of measurement. The contemporaneous network is a partial correlation network, which is emerging in the analysis of cross-sectional data but is not yet utilized in the analysis of time series data. We explain the importance of partial correlation networks and exemplify the network structures on time series data of a psychiatric patient.</description><identifier>ISSN: 2167-7026</identifier><identifier>EISSN: 2167-7034</identifier><identifier>DOI: 10.1177/2167702617744325</identifier><identifier>PMID: 29805918</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Theoretical/Methodological/Review</subject><ispartof>Clinical psychological science, 2018-05, Vol.6 (3), p.416-427</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018 2018 Association for Psychological Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-9e199f65de48297fa19c7078d5c25afc3468288fef33a246cfe28acefd97dada3</citedby><cites>FETCH-LOGICAL-c500t-9e199f65de48297fa19c7078d5c25afc3468288fef33a246cfe28acefd97dada3</cites><orcidid>0000-0003-4884-8118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/2167702617744325$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/2167702617744325$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29805918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Epskamp, Sacha</creatorcontrib><creatorcontrib>van Borkulo, Claudia D.</creatorcontrib><creatorcontrib>van der Veen, Date C.</creatorcontrib><creatorcontrib>Servaas, Michelle N.</creatorcontrib><creatorcontrib>Isvoranu, Adela-Maria</creatorcontrib><creatorcontrib>Riese, Harriëtte</creatorcontrib><creatorcontrib>Cramer, Angélique O. J.</creatorcontrib><title>Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections</title><title>Clinical psychological science</title><addtitle>Clin Psychol Sci</addtitle><description>Recent literature has introduced (a) the network perspective to psychology and (b) collection of time series data to capture symptom fluctuations and other time varying factors in daily life. Combining these trends allows for the estimation of intraindividual network structures. We argue that these networks can be directly applied in clinical research and practice as hypothesis generating structures. Two networks can be computed: a temporal network, in which one investigates if symptoms (or other relevant variables) predict one another over time, and a contemporaneous network, in which one investigates if symptoms predict one another in the same window of measurement. The contemporaneous network is a partial correlation network, which is emerging in the analysis of cross-sectional data but is not yet utilized in the analysis of time series data. We explain the importance of partial correlation networks and exemplify the network structures on time series data of a psychiatric patient.</description><subject>Theoretical/Methodological/Review</subject><issn>2167-7026</issn><issn>2167-7034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kc1PGzEQxa2KqiDgzgn5yGWp7d31Rw-VUMSXlNIc0rNl7HGysLGDvWkV_nocLY3aSvXFozdvnsf6IXRGySWlQnxmlAtBGC9109Ss_YCOdlIlSN0c7GvGD9Fpzk-kHEm5VPUndMiUJK2i8gj1M0g5BtN3r-DwAwy_YnrG36KDvgsL3AU8y1u7jGszLGMfF9sveL4EfL9axzSYYAFHjycxDLBTTIC4ydgEh-ej0O-aAezQxZBP0Edv-gyn7_cx-nFzPZ_cVdPvt_eTq2llW0KGSgFVyvPWQSOZEt5QZQUR0rWWtcbbuuGSSenB17VhDbcemDQWvFPCGWfqY_R1zF1vHlfgLIShbKLXqVuZtNXRdPrvTuiWehF_6la1jClVAi7eA1J82UAe9KrLFvp-_KBmpOGkQGC8WMlotSnmnMDvn6FE7zjpfzmVkfM_19sP_KZSDNVoyGYB-iluUgGU_x_4BqRwngo</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Epskamp, Sacha</creator><creator>van Borkulo, Claudia D.</creator><creator>van der Veen, Date C.</creator><creator>Servaas, Michelle N.</creator><creator>Isvoranu, Adela-Maria</creator><creator>Riese, Harriëtte</creator><creator>Cramer, Angélique O. J.</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4884-8118</orcidid></search><sort><creationdate>20180501</creationdate><title>Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections</title><author>Epskamp, Sacha ; van Borkulo, Claudia D. ; van der Veen, Date C. ; Servaas, Michelle N. ; Isvoranu, Adela-Maria ; Riese, Harriëtte ; Cramer, Angélique O. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-9e199f65de48297fa19c7078d5c25afc3468288fef33a246cfe28acefd97dada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Theoretical/Methodological/Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Epskamp, Sacha</creatorcontrib><creatorcontrib>van Borkulo, Claudia D.</creatorcontrib><creatorcontrib>van der Veen, Date C.</creatorcontrib><creatorcontrib>Servaas, Michelle N.</creatorcontrib><creatorcontrib>Isvoranu, Adela-Maria</creatorcontrib><creatorcontrib>Riese, Harriëtte</creatorcontrib><creatorcontrib>Cramer, Angélique O. J.</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical psychological science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epskamp, Sacha</au><au>van Borkulo, Claudia D.</au><au>van der Veen, Date C.</au><au>Servaas, Michelle N.</au><au>Isvoranu, Adela-Maria</au><au>Riese, Harriëtte</au><au>Cramer, Angélique O. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections</atitle><jtitle>Clinical psychological science</jtitle><addtitle>Clin Psychol Sci</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>6</volume><issue>3</issue><spage>416</spage><epage>427</epage><pages>416-427</pages><issn>2167-7026</issn><eissn>2167-7034</eissn><abstract>Recent literature has introduced (a) the network perspective to psychology and (b) collection of time series data to capture symptom fluctuations and other time varying factors in daily life. Combining these trends allows for the estimation of intraindividual network structures. We argue that these networks can be directly applied in clinical research and practice as hypothesis generating structures. Two networks can be computed: a temporal network, in which one investigates if symptoms (or other relevant variables) predict one another over time, and a contemporaneous network, in which one investigates if symptoms predict one another in the same window of measurement. The contemporaneous network is a partial correlation network, which is emerging in the analysis of cross-sectional data but is not yet utilized in the analysis of time series data. We explain the importance of partial correlation networks and exemplify the network structures on time series data of a psychiatric patient.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>29805918</pmid><doi>10.1177/2167702617744325</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4884-8118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2167-7026 |
ispartof | Clinical psychological science, 2018-05, Vol.6 (3), p.416-427 |
issn | 2167-7026 2167-7034 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5952299 |
source | SAGE Complete |
subjects | Theoretical/Methodological/Review |
title | Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20Network%20Modeling%20in%20Psychopathology:%20The%20Importance%20of%20Contemporaneous%20and%20Temporal%20Connections&rft.jtitle=Clinical%20psychological%20science&rft.au=Epskamp,%20Sacha&rft.date=2018-05-01&rft.volume=6&rft.issue=3&rft.spage=416&rft.epage=427&rft.pages=416-427&rft.issn=2167-7026&rft.eissn=2167-7034&rft_id=info:doi/10.1177/2167702617744325&rft_dat=%3Cproquest_pubme%3E2046011726%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046011726&rft_id=info:pmid/29805918&rft_sage_id=10.1177_2167702617744325&rfr_iscdi=true |