Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections

Recent literature has introduced (a) the network perspective to psychology and (b) collection of time series data to capture symptom fluctuations and other time varying factors in daily life. Combining these trends allows for the estimation of intraindividual network structures. We argue that these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical psychological science 2018-05, Vol.6 (3), p.416-427
Hauptverfasser: Epskamp, Sacha, van Borkulo, Claudia D., van der Veen, Date C., Servaas, Michelle N., Isvoranu, Adela-Maria, Riese, Harriëtte, Cramer, Angélique O. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 3
container_start_page 416
container_title Clinical psychological science
container_volume 6
creator Epskamp, Sacha
van Borkulo, Claudia D.
van der Veen, Date C.
Servaas, Michelle N.
Isvoranu, Adela-Maria
Riese, Harriëtte
Cramer, Angélique O. J.
description Recent literature has introduced (a) the network perspective to psychology and (b) collection of time series data to capture symptom fluctuations and other time varying factors in daily life. Combining these trends allows for the estimation of intraindividual network structures. We argue that these networks can be directly applied in clinical research and practice as hypothesis generating structures. Two networks can be computed: a temporal network, in which one investigates if symptoms (or other relevant variables) predict one another over time, and a contemporaneous network, in which one investigates if symptoms predict one another in the same window of measurement. The contemporaneous network is a partial correlation network, which is emerging in the analysis of cross-sectional data but is not yet utilized in the analysis of time series data. We explain the importance of partial correlation networks and exemplify the network structures on time series data of a psychiatric patient.
doi_str_mv 10.1177/2167702617744325
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5952299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_2167702617744325</sage_id><sourcerecordid>2046011726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-9e199f65de48297fa19c7078d5c25afc3468288fef33a246cfe28acefd97dada3</originalsourceid><addsrcrecordid>eNp1kc1PGzEQxa2KqiDgzgn5yGWp7d31Rw-VUMSXlNIc0rNl7HGysLGDvWkV_nocLY3aSvXFozdvnsf6IXRGySWlQnxmlAtBGC9109Ss_YCOdlIlSN0c7GvGD9Fpzk-kHEm5VPUndMiUJK2i8gj1M0g5BtN3r-DwAwy_YnrG36KDvgsL3AU8y1u7jGszLGMfF9sveL4EfL9axzSYYAFHjycxDLBTTIC4ydgEh-ej0O-aAezQxZBP0Edv-gyn7_cx-nFzPZ_cVdPvt_eTq2llW0KGSgFVyvPWQSOZEt5QZQUR0rWWtcbbuuGSSenB17VhDbcemDQWvFPCGWfqY_R1zF1vHlfgLIShbKLXqVuZtNXRdPrvTuiWehF_6la1jClVAi7eA1J82UAe9KrLFvp-_KBmpOGkQGC8WMlotSnmnMDvn6FE7zjpfzmVkfM_19sP_KZSDNVoyGYB-iluUgGU_x_4BqRwngo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046011726</pqid></control><display><type>article</type><title>Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections</title><source>SAGE Complete</source><creator>Epskamp, Sacha ; van Borkulo, Claudia D. ; van der Veen, Date C. ; Servaas, Michelle N. ; Isvoranu, Adela-Maria ; Riese, Harriëtte ; Cramer, Angélique O. J.</creator><creatorcontrib>Epskamp, Sacha ; van Borkulo, Claudia D. ; van der Veen, Date C. ; Servaas, Michelle N. ; Isvoranu, Adela-Maria ; Riese, Harriëtte ; Cramer, Angélique O. J.</creatorcontrib><description>Recent literature has introduced (a) the network perspective to psychology and (b) collection of time series data to capture symptom fluctuations and other time varying factors in daily life. Combining these trends allows for the estimation of intraindividual network structures. We argue that these networks can be directly applied in clinical research and practice as hypothesis generating structures. Two networks can be computed: a temporal network, in which one investigates if symptoms (or other relevant variables) predict one another over time, and a contemporaneous network, in which one investigates if symptoms predict one another in the same window of measurement. The contemporaneous network is a partial correlation network, which is emerging in the analysis of cross-sectional data but is not yet utilized in the analysis of time series data. We explain the importance of partial correlation networks and exemplify the network structures on time series data of a psychiatric patient.</description><identifier>ISSN: 2167-7026</identifier><identifier>EISSN: 2167-7034</identifier><identifier>DOI: 10.1177/2167702617744325</identifier><identifier>PMID: 29805918</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Theoretical/Methodological/Review</subject><ispartof>Clinical psychological science, 2018-05, Vol.6 (3), p.416-427</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018 2018 Association for Psychological Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-9e199f65de48297fa19c7078d5c25afc3468288fef33a246cfe28acefd97dada3</citedby><cites>FETCH-LOGICAL-c500t-9e199f65de48297fa19c7078d5c25afc3468288fef33a246cfe28acefd97dada3</cites><orcidid>0000-0003-4884-8118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/2167702617744325$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/2167702617744325$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29805918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Epskamp, Sacha</creatorcontrib><creatorcontrib>van Borkulo, Claudia D.</creatorcontrib><creatorcontrib>van der Veen, Date C.</creatorcontrib><creatorcontrib>Servaas, Michelle N.</creatorcontrib><creatorcontrib>Isvoranu, Adela-Maria</creatorcontrib><creatorcontrib>Riese, Harriëtte</creatorcontrib><creatorcontrib>Cramer, Angélique O. J.</creatorcontrib><title>Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections</title><title>Clinical psychological science</title><addtitle>Clin Psychol Sci</addtitle><description>Recent literature has introduced (a) the network perspective to psychology and (b) collection of time series data to capture symptom fluctuations and other time varying factors in daily life. Combining these trends allows for the estimation of intraindividual network structures. We argue that these networks can be directly applied in clinical research and practice as hypothesis generating structures. Two networks can be computed: a temporal network, in which one investigates if symptoms (or other relevant variables) predict one another over time, and a contemporaneous network, in which one investigates if symptoms predict one another in the same window of measurement. The contemporaneous network is a partial correlation network, which is emerging in the analysis of cross-sectional data but is not yet utilized in the analysis of time series data. We explain the importance of partial correlation networks and exemplify the network structures on time series data of a psychiatric patient.</description><subject>Theoretical/Methodological/Review</subject><issn>2167-7026</issn><issn>2167-7034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kc1PGzEQxa2KqiDgzgn5yGWp7d31Rw-VUMSXlNIc0rNl7HGysLGDvWkV_nocLY3aSvXFozdvnsf6IXRGySWlQnxmlAtBGC9109Ss_YCOdlIlSN0c7GvGD9Fpzk-kHEm5VPUndMiUJK2i8gj1M0g5BtN3r-DwAwy_YnrG36KDvgsL3AU8y1u7jGszLGMfF9sveL4EfL9axzSYYAFHjycxDLBTTIC4ydgEh-ej0O-aAezQxZBP0Edv-gyn7_cx-nFzPZ_cVdPvt_eTq2llW0KGSgFVyvPWQSOZEt5QZQUR0rWWtcbbuuGSSenB17VhDbcemDQWvFPCGWfqY_R1zF1vHlfgLIShbKLXqVuZtNXRdPrvTuiWehF_6la1jClVAi7eA1J82UAe9KrLFvp-_KBmpOGkQGC8WMlotSnmnMDvn6FE7zjpfzmVkfM_19sP_KZSDNVoyGYB-iluUgGU_x_4BqRwngo</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Epskamp, Sacha</creator><creator>van Borkulo, Claudia D.</creator><creator>van der Veen, Date C.</creator><creator>Servaas, Michelle N.</creator><creator>Isvoranu, Adela-Maria</creator><creator>Riese, Harriëtte</creator><creator>Cramer, Angélique O. J.</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4884-8118</orcidid></search><sort><creationdate>20180501</creationdate><title>Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections</title><author>Epskamp, Sacha ; van Borkulo, Claudia D. ; van der Veen, Date C. ; Servaas, Michelle N. ; Isvoranu, Adela-Maria ; Riese, Harriëtte ; Cramer, Angélique O. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-9e199f65de48297fa19c7078d5c25afc3468288fef33a246cfe28acefd97dada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Theoretical/Methodological/Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Epskamp, Sacha</creatorcontrib><creatorcontrib>van Borkulo, Claudia D.</creatorcontrib><creatorcontrib>van der Veen, Date C.</creatorcontrib><creatorcontrib>Servaas, Michelle N.</creatorcontrib><creatorcontrib>Isvoranu, Adela-Maria</creatorcontrib><creatorcontrib>Riese, Harriëtte</creatorcontrib><creatorcontrib>Cramer, Angélique O. J.</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical psychological science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Epskamp, Sacha</au><au>van Borkulo, Claudia D.</au><au>van der Veen, Date C.</au><au>Servaas, Michelle N.</au><au>Isvoranu, Adela-Maria</au><au>Riese, Harriëtte</au><au>Cramer, Angélique O. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections</atitle><jtitle>Clinical psychological science</jtitle><addtitle>Clin Psychol Sci</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>6</volume><issue>3</issue><spage>416</spage><epage>427</epage><pages>416-427</pages><issn>2167-7026</issn><eissn>2167-7034</eissn><abstract>Recent literature has introduced (a) the network perspective to psychology and (b) collection of time series data to capture symptom fluctuations and other time varying factors in daily life. Combining these trends allows for the estimation of intraindividual network structures. We argue that these networks can be directly applied in clinical research and practice as hypothesis generating structures. Two networks can be computed: a temporal network, in which one investigates if symptoms (or other relevant variables) predict one another over time, and a contemporaneous network, in which one investigates if symptoms predict one another in the same window of measurement. The contemporaneous network is a partial correlation network, which is emerging in the analysis of cross-sectional data but is not yet utilized in the analysis of time series data. We explain the importance of partial correlation networks and exemplify the network structures on time series data of a psychiatric patient.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>29805918</pmid><doi>10.1177/2167702617744325</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4884-8118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2167-7026
ispartof Clinical psychological science, 2018-05, Vol.6 (3), p.416-427
issn 2167-7026
2167-7034
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5952299
source SAGE Complete
subjects Theoretical/Methodological/Review
title Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20Network%20Modeling%20in%20Psychopathology:%20The%20Importance%20of%20Contemporaneous%20and%20Temporal%20Connections&rft.jtitle=Clinical%20psychological%20science&rft.au=Epskamp,%20Sacha&rft.date=2018-05-01&rft.volume=6&rft.issue=3&rft.spage=416&rft.epage=427&rft.pages=416-427&rft.issn=2167-7026&rft.eissn=2167-7034&rft_id=info:doi/10.1177/2167702617744325&rft_dat=%3Cproquest_pubme%3E2046011726%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046011726&rft_id=info:pmid/29805918&rft_sage_id=10.1177_2167702617744325&rfr_iscdi=true