Capybara Oil Improves Hepatic Mitochondrial Dysfunction, Steatosis, and Inflammation in a Murine Model of Nonalcoholic Fatty Liver Disease

Nonalcoholic fatty liver disease (NAFLD) is recognized as the most common cause of liver dysfunction worldwide and is commonly associated with obesity. Evidences suggest that NAFLD might be a mitochondrial disease, which contributes to the hepatic steatosis, oxidative stress, cytokine release, and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evidence-based complementary and alternative medicine 2018-01, Vol.2018 (2018), p.1-9
Hauptverfasser: Martins, Marco A., Barquero, Gonzalo, Neto-Ferreira, Rodrigo, de Carvalho, Jorge J., Moura, Aníbal S., Cortez, Erika, Nascimento, Ana L. R., Ciambarella, Bianca T., Rabelo, Kíssila, Pereira, Priscila G., Vieira, Aline B., Marinho, Polyana Cury, Guimarães, Fernanda V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 2018
container_start_page 1
container_title Evidence-based complementary and alternative medicine
container_volume 2018
creator Martins, Marco A.
Barquero, Gonzalo
Neto-Ferreira, Rodrigo
de Carvalho, Jorge J.
Moura, Aníbal S.
Cortez, Erika
Nascimento, Ana L. R.
Ciambarella, Bianca T.
Rabelo, Kíssila
Pereira, Priscila G.
Vieira, Aline B.
Marinho, Polyana Cury
Guimarães, Fernanda V.
description Nonalcoholic fatty liver disease (NAFLD) is recognized as the most common cause of liver dysfunction worldwide and is commonly associated with obesity. Evidences suggest that NAFLD might be a mitochondrial disease, which contributes to the hepatic steatosis, oxidative stress, cytokine release, and cell death. Capybara oil (CO) is a rich source of polyunsaturated fatty acids (PUFA), which is known to improve inflammation and oxidative stress. In order to determine the effects of CO on NAFLD, C57Bl/6 mice were divided into 3 groups and fed a high-fat diet (HFD) (NAFLD group and NAFLD + CO group) or a control diet (CG group) during 16 weeks. The CO (1.5 g/kg/daily) was administered by gavage during the last 4 weeks of the diet protocol. We evaluated plasma liver enzymes, hepatic steatosis, and cytokine expression in liver as well as hepatocyte ultrastructural morphology and mitochondrial function. CO treatment suppressed hepatic steatosis, attenuated inflammatory response, and decreased plasma alanine aminotransferase (ALT) in mice with NAFLD. CO was also capable of restoring mitochondrial ultrastructure and function as well as balance superoxide dismutase and catalase levels. Our findings indicate that CO treatment has positive effects on NAFLD improving mitochondrial dysfunction, steatosis, acute inflammation, and oxidative stress.
doi_str_mv 10.1155/2018/4956079
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5949171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A604314085</galeid><sourcerecordid>A604314085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-d7474c690b4335a40118f522ea18716e2455ce161bbac7660a61ef4a1aeb09f3</originalsourceid><addsrcrecordid>eNqNkk9v0zAYhyMEYqNw44wscUGiZXZix_EFaeoYq9SyAztws944b1ZPiV3spKhfgU-Nq5YOOHGypffR4z-_X5a9ZvQDY0Jc5JRVF1yJkkr1JDtnkrMZz6vq6Wkvv51lL2J8oDRXUsrn2VmuKlEoIc-zn3PY7GoIQG5tRxb9JvgtRnKDGxisISs7eLP2rgkWOnK1i-3ozGC9m5KvA8Lgo41TAq4hC9d20PewHxLrCJDVGKxDsvINdsS35It30Bm_9l0SX8Mw7MjSbjGQKxsRIr7MnrXQRXx1XCfZ3fWnu_nNbHn7eTG_XM4MV2qYNZJLbkpFa14UAjhlrGpFniOwSrIScy6EQVayugYjy5JCybDlwABrqtpikn08aDdj3WNj0A0BOr0Jtoew0x6s_nvi7Frf-60WiismWRK8OwqC_z5iHHRvo8GuA4d-jDqnKQ2hClEk9O0_6IMfQ_qGPVVUucgrmT9S99Chtq716Vyzl-rLkvKCcZrimmTTA2WCjzFge7oyo3rfBL1vgj42IeFv_nzmCf4dfQLeH4C1dQ38sP-pw8RgC490QgvBi1-8IsWK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2038252872</pqid></control><display><type>article</type><title>Capybara Oil Improves Hepatic Mitochondrial Dysfunction, Steatosis, and Inflammation in a Murine Model of Nonalcoholic Fatty Liver Disease</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Martins, Marco A. ; Barquero, Gonzalo ; Neto-Ferreira, Rodrigo ; de Carvalho, Jorge J. ; Moura, Aníbal S. ; Cortez, Erika ; Nascimento, Ana L. R. ; Ciambarella, Bianca T. ; Rabelo, Kíssila ; Pereira, Priscila G. ; Vieira, Aline B. ; Marinho, Polyana Cury ; Guimarães, Fernanda V.</creator><contributor>Xu, Yuan ; Yuan Xu</contributor><creatorcontrib>Martins, Marco A. ; Barquero, Gonzalo ; Neto-Ferreira, Rodrigo ; de Carvalho, Jorge J. ; Moura, Aníbal S. ; Cortez, Erika ; Nascimento, Ana L. R. ; Ciambarella, Bianca T. ; Rabelo, Kíssila ; Pereira, Priscila G. ; Vieira, Aline B. ; Marinho, Polyana Cury ; Guimarães, Fernanda V. ; Xu, Yuan ; Yuan Xu</creatorcontrib><description>Nonalcoholic fatty liver disease (NAFLD) is recognized as the most common cause of liver dysfunction worldwide and is commonly associated with obesity. Evidences suggest that NAFLD might be a mitochondrial disease, which contributes to the hepatic steatosis, oxidative stress, cytokine release, and cell death. Capybara oil (CO) is a rich source of polyunsaturated fatty acids (PUFA), which is known to improve inflammation and oxidative stress. In order to determine the effects of CO on NAFLD, C57Bl/6 mice were divided into 3 groups and fed a high-fat diet (HFD) (NAFLD group and NAFLD + CO group) or a control diet (CG group) during 16 weeks. The CO (1.5 g/kg/daily) was administered by gavage during the last 4 weeks of the diet protocol. We evaluated plasma liver enzymes, hepatic steatosis, and cytokine expression in liver as well as hepatocyte ultrastructural morphology and mitochondrial function. CO treatment suppressed hepatic steatosis, attenuated inflammatory response, and decreased plasma alanine aminotransferase (ALT) in mice with NAFLD. CO was also capable of restoring mitochondrial ultrastructure and function as well as balance superoxide dismutase and catalase levels. Our findings indicate that CO treatment has positive effects on NAFLD improving mitochondrial dysfunction, steatosis, acute inflammation, and oxidative stress.</description><identifier>ISSN: 1741-427X</identifier><identifier>EISSN: 1741-4288</identifier><identifier>DOI: 10.1155/2018/4956079</identifier><identifier>PMID: 29853957</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Alanine ; Alanine transaminase ; Alcohol ; Animal models ; Animals ; Carbohydrates ; Catalase ; Cell death ; Cytokines ; Diet ; Enzymes ; Fatty liver ; Hepatology ; High fat diet ; Hydrochoerus hydrochaeris ; Inflammation ; Inflammatory response ; Insulin resistance ; Lipids ; Liver ; Liver diseases ; Metabolism ; Mice ; Mitochondria ; Nutrition research ; Obesity ; Oils &amp; fats ; Oxidative stress ; Polyunsaturated fatty acids ; Rodents ; Steatosis ; Superoxide ; Superoxide dismutase ; Systematic review ; Ultrastructure ; Unsaturated fatty acids</subject><ispartof>Evidence-based complementary and alternative medicine, 2018-01, Vol.2018 (2018), p.1-9</ispartof><rights>Copyright © 2018 Polyana C. Marinho et al.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2018 Polyana C. Marinho et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2018 Polyana C. Marinho et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-d7474c690b4335a40118f522ea18716e2455ce161bbac7660a61ef4a1aeb09f3</citedby><cites>FETCH-LOGICAL-c499t-d7474c690b4335a40118f522ea18716e2455ce161bbac7660a61ef4a1aeb09f3</cites><orcidid>0000-0002-9896-9850 ; 0000-0003-0262-061X ; 0000-0002-2479-6774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949171/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5949171/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29853957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Xu, Yuan</contributor><contributor>Yuan Xu</contributor><creatorcontrib>Martins, Marco A.</creatorcontrib><creatorcontrib>Barquero, Gonzalo</creatorcontrib><creatorcontrib>Neto-Ferreira, Rodrigo</creatorcontrib><creatorcontrib>de Carvalho, Jorge J.</creatorcontrib><creatorcontrib>Moura, Aníbal S.</creatorcontrib><creatorcontrib>Cortez, Erika</creatorcontrib><creatorcontrib>Nascimento, Ana L. R.</creatorcontrib><creatorcontrib>Ciambarella, Bianca T.</creatorcontrib><creatorcontrib>Rabelo, Kíssila</creatorcontrib><creatorcontrib>Pereira, Priscila G.</creatorcontrib><creatorcontrib>Vieira, Aline B.</creatorcontrib><creatorcontrib>Marinho, Polyana Cury</creatorcontrib><creatorcontrib>Guimarães, Fernanda V.</creatorcontrib><title>Capybara Oil Improves Hepatic Mitochondrial Dysfunction, Steatosis, and Inflammation in a Murine Model of Nonalcoholic Fatty Liver Disease</title><title>Evidence-based complementary and alternative medicine</title><addtitle>Evid Based Complement Alternat Med</addtitle><description>Nonalcoholic fatty liver disease (NAFLD) is recognized as the most common cause of liver dysfunction worldwide and is commonly associated with obesity. Evidences suggest that NAFLD might be a mitochondrial disease, which contributes to the hepatic steatosis, oxidative stress, cytokine release, and cell death. Capybara oil (CO) is a rich source of polyunsaturated fatty acids (PUFA), which is known to improve inflammation and oxidative stress. In order to determine the effects of CO on NAFLD, C57Bl/6 mice were divided into 3 groups and fed a high-fat diet (HFD) (NAFLD group and NAFLD + CO group) or a control diet (CG group) during 16 weeks. The CO (1.5 g/kg/daily) was administered by gavage during the last 4 weeks of the diet protocol. We evaluated plasma liver enzymes, hepatic steatosis, and cytokine expression in liver as well as hepatocyte ultrastructural morphology and mitochondrial function. CO treatment suppressed hepatic steatosis, attenuated inflammatory response, and decreased plasma alanine aminotransferase (ALT) in mice with NAFLD. CO was also capable of restoring mitochondrial ultrastructure and function as well as balance superoxide dismutase and catalase levels. Our findings indicate that CO treatment has positive effects on NAFLD improving mitochondrial dysfunction, steatosis, acute inflammation, and oxidative stress.</description><subject>Alanine</subject><subject>Alanine transaminase</subject><subject>Alcohol</subject><subject>Animal models</subject><subject>Animals</subject><subject>Carbohydrates</subject><subject>Catalase</subject><subject>Cell death</subject><subject>Cytokines</subject><subject>Diet</subject><subject>Enzymes</subject><subject>Fatty liver</subject><subject>Hepatology</subject><subject>High fat diet</subject><subject>Hydrochoerus hydrochaeris</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Insulin resistance</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Nutrition research</subject><subject>Obesity</subject><subject>Oils &amp; fats</subject><subject>Oxidative stress</subject><subject>Polyunsaturated fatty acids</subject><subject>Rodents</subject><subject>Steatosis</subject><subject>Superoxide</subject><subject>Superoxide dismutase</subject><subject>Systematic review</subject><subject>Ultrastructure</subject><subject>Unsaturated fatty acids</subject><issn>1741-427X</issn><issn>1741-4288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk9v0zAYhyMEYqNw44wscUGiZXZix_EFaeoYq9SyAztws944b1ZPiV3spKhfgU-Nq5YOOHGypffR4z-_X5a9ZvQDY0Jc5JRVF1yJkkr1JDtnkrMZz6vq6Wkvv51lL2J8oDRXUsrn2VmuKlEoIc-zn3PY7GoIQG5tRxb9JvgtRnKDGxisISs7eLP2rgkWOnK1i-3ozGC9m5KvA8Lgo41TAq4hC9d20PewHxLrCJDVGKxDsvINdsS35It30Bm_9l0SX8Mw7MjSbjGQKxsRIr7MnrXQRXx1XCfZ3fWnu_nNbHn7eTG_XM4MV2qYNZJLbkpFa14UAjhlrGpFniOwSrIScy6EQVayugYjy5JCybDlwABrqtpikn08aDdj3WNj0A0BOr0Jtoew0x6s_nvi7Frf-60WiismWRK8OwqC_z5iHHRvo8GuA4d-jDqnKQ2hClEk9O0_6IMfQ_qGPVVUucgrmT9S99Chtq716Vyzl-rLkvKCcZrimmTTA2WCjzFge7oyo3rfBL1vgj42IeFv_nzmCf4dfQLeH4C1dQ38sP-pw8RgC490QgvBi1-8IsWK</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Martins, Marco A.</creator><creator>Barquero, Gonzalo</creator><creator>Neto-Ferreira, Rodrigo</creator><creator>de Carvalho, Jorge J.</creator><creator>Moura, Aníbal S.</creator><creator>Cortez, Erika</creator><creator>Nascimento, Ana L. R.</creator><creator>Ciambarella, Bianca T.</creator><creator>Rabelo, Kíssila</creator><creator>Pereira, Priscila G.</creator><creator>Vieira, Aline B.</creator><creator>Marinho, Polyana Cury</creator><creator>Guimarães, Fernanda V.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7T5</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9896-9850</orcidid><orcidid>https://orcid.org/0000-0003-0262-061X</orcidid><orcidid>https://orcid.org/0000-0002-2479-6774</orcidid></search><sort><creationdate>20180101</creationdate><title>Capybara Oil Improves Hepatic Mitochondrial Dysfunction, Steatosis, and Inflammation in a Murine Model of Nonalcoholic Fatty Liver Disease</title><author>Martins, Marco A. ; Barquero, Gonzalo ; Neto-Ferreira, Rodrigo ; de Carvalho, Jorge J. ; Moura, Aníbal S. ; Cortez, Erika ; Nascimento, Ana L. R. ; Ciambarella, Bianca T. ; Rabelo, Kíssila ; Pereira, Priscila G. ; Vieira, Aline B. ; Marinho, Polyana Cury ; Guimarães, Fernanda V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-d7474c690b4335a40118f522ea18716e2455ce161bbac7660a61ef4a1aeb09f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alanine</topic><topic>Alanine transaminase</topic><topic>Alcohol</topic><topic>Animal models</topic><topic>Animals</topic><topic>Carbohydrates</topic><topic>Catalase</topic><topic>Cell death</topic><topic>Cytokines</topic><topic>Diet</topic><topic>Enzymes</topic><topic>Fatty liver</topic><topic>Hepatology</topic><topic>High fat diet</topic><topic>Hydrochoerus hydrochaeris</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Insulin resistance</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Nutrition research</topic><topic>Obesity</topic><topic>Oils &amp; fats</topic><topic>Oxidative stress</topic><topic>Polyunsaturated fatty acids</topic><topic>Rodents</topic><topic>Steatosis</topic><topic>Superoxide</topic><topic>Superoxide dismutase</topic><topic>Systematic review</topic><topic>Ultrastructure</topic><topic>Unsaturated fatty acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, Marco A.</creatorcontrib><creatorcontrib>Barquero, Gonzalo</creatorcontrib><creatorcontrib>Neto-Ferreira, Rodrigo</creatorcontrib><creatorcontrib>de Carvalho, Jorge J.</creatorcontrib><creatorcontrib>Moura, Aníbal S.</creatorcontrib><creatorcontrib>Cortez, Erika</creatorcontrib><creatorcontrib>Nascimento, Ana L. R.</creatorcontrib><creatorcontrib>Ciambarella, Bianca T.</creatorcontrib><creatorcontrib>Rabelo, Kíssila</creatorcontrib><creatorcontrib>Pereira, Priscila G.</creatorcontrib><creatorcontrib>Vieira, Aline B.</creatorcontrib><creatorcontrib>Marinho, Polyana Cury</creatorcontrib><creatorcontrib>Guimarães, Fernanda V.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Evidence-based complementary and alternative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, Marco A.</au><au>Barquero, Gonzalo</au><au>Neto-Ferreira, Rodrigo</au><au>de Carvalho, Jorge J.</au><au>Moura, Aníbal S.</au><au>Cortez, Erika</au><au>Nascimento, Ana L. R.</au><au>Ciambarella, Bianca T.</au><au>Rabelo, Kíssila</au><au>Pereira, Priscila G.</au><au>Vieira, Aline B.</au><au>Marinho, Polyana Cury</au><au>Guimarães, Fernanda V.</au><au>Xu, Yuan</au><au>Yuan Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capybara Oil Improves Hepatic Mitochondrial Dysfunction, Steatosis, and Inflammation in a Murine Model of Nonalcoholic Fatty Liver Disease</atitle><jtitle>Evidence-based complementary and alternative medicine</jtitle><addtitle>Evid Based Complement Alternat Med</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1741-427X</issn><eissn>1741-4288</eissn><abstract>Nonalcoholic fatty liver disease (NAFLD) is recognized as the most common cause of liver dysfunction worldwide and is commonly associated with obesity. Evidences suggest that NAFLD might be a mitochondrial disease, which contributes to the hepatic steatosis, oxidative stress, cytokine release, and cell death. Capybara oil (CO) is a rich source of polyunsaturated fatty acids (PUFA), which is known to improve inflammation and oxidative stress. In order to determine the effects of CO on NAFLD, C57Bl/6 mice were divided into 3 groups and fed a high-fat diet (HFD) (NAFLD group and NAFLD + CO group) or a control diet (CG group) during 16 weeks. The CO (1.5 g/kg/daily) was administered by gavage during the last 4 weeks of the diet protocol. We evaluated plasma liver enzymes, hepatic steatosis, and cytokine expression in liver as well as hepatocyte ultrastructural morphology and mitochondrial function. CO treatment suppressed hepatic steatosis, attenuated inflammatory response, and decreased plasma alanine aminotransferase (ALT) in mice with NAFLD. CO was also capable of restoring mitochondrial ultrastructure and function as well as balance superoxide dismutase and catalase levels. Our findings indicate that CO treatment has positive effects on NAFLD improving mitochondrial dysfunction, steatosis, acute inflammation, and oxidative stress.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29853957</pmid><doi>10.1155/2018/4956079</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9896-9850</orcidid><orcidid>https://orcid.org/0000-0003-0262-061X</orcidid><orcidid>https://orcid.org/0000-0002-2479-6774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-427X
ispartof Evidence-based complementary and alternative medicine, 2018-01, Vol.2018 (2018), p.1-9
issn 1741-427X
1741-4288
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5949171
source PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Alanine
Alanine transaminase
Alcohol
Animal models
Animals
Carbohydrates
Catalase
Cell death
Cytokines
Diet
Enzymes
Fatty liver
Hepatology
High fat diet
Hydrochoerus hydrochaeris
Inflammation
Inflammatory response
Insulin resistance
Lipids
Liver
Liver diseases
Metabolism
Mice
Mitochondria
Nutrition research
Obesity
Oils & fats
Oxidative stress
Polyunsaturated fatty acids
Rodents
Steatosis
Superoxide
Superoxide dismutase
Systematic review
Ultrastructure
Unsaturated fatty acids
title Capybara Oil Improves Hepatic Mitochondrial Dysfunction, Steatosis, and Inflammation in a Murine Model of Nonalcoholic Fatty Liver Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capybara%20Oil%20Improves%20Hepatic%20Mitochondrial%20Dysfunction,%20Steatosis,%20and%20Inflammation%20in%20a%20Murine%20Model%20of%20Nonalcoholic%20Fatty%20Liver%20Disease&rft.jtitle=Evidence-based%20complementary%20and%20alternative%20medicine&rft.au=Martins,%20Marco%20A.&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1741-427X&rft.eissn=1741-4288&rft_id=info:doi/10.1155/2018/4956079&rft_dat=%3Cgale_pubme%3EA604314085%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2038252872&rft_id=info:pmid/29853957&rft_galeid=A604314085&rfr_iscdi=true