Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO₂ Nanoflowers via Vacuum Annealing Treatment

In this work, SnO₂ nanoflowers synthesized by a hydrothermal method were employed as hydrogen sensing materials. The as-synthesized SnO₂ nanoflowers consisted of cuboid-like SnO₂ nanorods with tetragonal structures. A great increase in the relative content of surface-adsorbed oxygen was observed aft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2018-03, Vol.18 (4), p.949
Hauptverfasser: Liu, Gao, Wang, Zhao, Chen, Zihui, Yang, Shulin, Fu, Xingxing, Huang, Rui, Li, Xiaokang, Xiong, Juan, Hu, Yongming, Gu, Haoshuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, SnO₂ nanoflowers synthesized by a hydrothermal method were employed as hydrogen sensing materials. The as-synthesized SnO₂ nanoflowers consisted of cuboid-like SnO₂ nanorods with tetragonal structures. A great increase in the relative content of surface-adsorbed oxygen was observed after the vacuum annealing treatment, and this increase could have been due to the increase in surface oxygen vacancies serving as preferential adsorption sites for oxygen species. Annealing treatment resulted in an 8% increase in the specific surface area of the samples. Moreover, the conductivity of the sensors decreased after the annealing treatment, which should be attributed to the increase in electron scattering around the defects and the compensated donor behavior of the oxygen vacancies due to the surface oxygen adsorption. The hydrogen sensors of the annealed samples, compared to those of the unannealed samples, exhibited a much higher sensitivity and faster response rate. The sensor response factor and response rate increased from 27.1% to 80.2% and 0.34%/s to 1.15%/s, respectively. This remarkable enhancement in sensing performance induced by the annealing treatment could be attributed to the larger specific surface areas and higher amount of surface-adsorbed oxygen, which provides a greater reaction space for hydrogen. Moreover, the sensors with annealed SnO₂ nanoflowers also exhibited high selectivity towards hydrogen against CH₄, CO, and ethanol.
ISSN:1424-8220
1424-8220
DOI:10.3390/s18040949