Simulation Analysis of Fluid-Structure Interaction of High Velocity Environment Influence on Aircraft Wing Materials under Different Mach Numbers

Aircraft service process is in a state of the composite load of pressure and temperature for a long period of time, which inevitably affects the inherent characteristics of some components in aircraft accordingly. The flow field of aircraft wing materials under different Mach numbers is simulated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2018-04, Vol.18 (4), p.1248
Hauptverfasser: Zhang, Lijun, Sun, Changyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1248
container_title Sensors (Basel, Switzerland)
container_volume 18
creator Zhang, Lijun
Sun, Changyan
description Aircraft service process is in a state of the composite load of pressure and temperature for a long period of time, which inevitably affects the inherent characteristics of some components in aircraft accordingly. The flow field of aircraft wing materials under different Mach numbers is simulated by Fluent in order to extract pressure and temperature on the wing in this paper. To determine the effect of coupling stress on the wing's material and structural properties, the fluid-structure interaction (FSI) method is used in ANSYS-Workbench to calculate the stress that is caused by pressure and temperature. Simulation analysis results show that with the increase of Mach number, the pressure and temperature on the wing's surface both increase exponentially and thermal stress that is caused by temperature will be the main factor in the coupled stress. When compared with three kinds of materials, titanium alloy, aluminum alloy, and Haynes alloy, carbon fiber composite material has better performance in service at high speed, and natural frequency under coupling pre-stressing will get smaller.
doi_str_mv 10.3390/s18041248
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2040874591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-a3412da8b9ebbf44ff6ecc7c76813a646a63ff454402f8a3fc0f2a24177175d73</originalsourceid><addsrcrecordid>eNpdkU9vFCEchkmjaevaQ79AQ-JFD6MMsANzMdnU1jZp9VC1R8IwsEvDQOVPk_0YfmMZWzfVE5Dfw5MXXgCOW_SekB59SC1HtMWU74HDlmLacIzRi2f7A_AqpTuEMCGE74MD3HdsPh2CXzd2Kk5mGzxceem2ySYYDDx3xY7NTY5F5RI1vPRZR6n-cHV8Ydcb-EO7oGzewjP_YGPwk_a5gsYV7ZWGs9FGFaXJ8Nb6NbyW1WGlS7D4UUf4yRqj43zpWqoN_FKmQcf0Grw0ldFHT-sCfD8_-3Z60Vx9_Xx5urpqFEUkN5LUF4-SD70eBkOpMZ1WiinW8ZbIjnayI8bQJaUIGy6JUchgiWnLWMuWIyML8PHRe1-GSY-q5ojSiftoJxm3Ikgr_p14uxHr8CCWPeWUz4K3T4IYfhadsphsUto56XUoSWCEWYcQqnkW4M1_6F0osX73TFHEGV32M_XukVIxpBS12YVpkZiLFruiK3vyPP2O_Nss-Q12daXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040874591</pqid></control><display><type>article</type><title>Simulation Analysis of Fluid-Structure Interaction of High Velocity Environment Influence on Aircraft Wing Materials under Different Mach Numbers</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Lijun ; Sun, Changyan</creator><creatorcontrib>Zhang, Lijun ; Sun, Changyan</creatorcontrib><description>Aircraft service process is in a state of the composite load of pressure and temperature for a long period of time, which inevitably affects the inherent characteristics of some components in aircraft accordingly. The flow field of aircraft wing materials under different Mach numbers is simulated by Fluent in order to extract pressure and temperature on the wing in this paper. To determine the effect of coupling stress on the wing's material and structural properties, the fluid-structure interaction (FSI) method is used in ANSYS-Workbench to calculate the stress that is caused by pressure and temperature. Simulation analysis results show that with the increase of Mach number, the pressure and temperature on the wing's surface both increase exponentially and thermal stress that is caused by temperature will be the main factor in the coupled stress. When compared with three kinds of materials, titanium alloy, aluminum alloy, and Haynes alloy, carbon fiber composite material has better performance in service at high speed, and natural frequency under coupling pre-stressing will get smaller.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s18041248</identifier><identifier>PMID: 29670023</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aircraft ; Aircraft components ; Carbon fiber reinforced plastics ; Carbon fibers ; Composite materials ; Fiber composites ; Fluid-structure interaction ; Mach number ; Prestressing ; Simulation ; Thermal stress ; Wings (aircraft)</subject><ispartof>Sensors (Basel, Switzerland), 2018-04, Vol.18 (4), p.1248</ispartof><rights>Copyright MDPI AG 2018</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-a3412da8b9ebbf44ff6ecc7c76813a646a63ff454402f8a3fc0f2a24177175d73</citedby><cites>FETCH-LOGICAL-c403t-a3412da8b9ebbf44ff6ecc7c76813a646a63ff454402f8a3fc0f2a24177175d73</cites><orcidid>0000-0002-5273-6867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948487/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948487/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29670023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Lijun</creatorcontrib><creatorcontrib>Sun, Changyan</creatorcontrib><title>Simulation Analysis of Fluid-Structure Interaction of High Velocity Environment Influence on Aircraft Wing Materials under Different Mach Numbers</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Aircraft service process is in a state of the composite load of pressure and temperature for a long period of time, which inevitably affects the inherent characteristics of some components in aircraft accordingly. The flow field of aircraft wing materials under different Mach numbers is simulated by Fluent in order to extract pressure and temperature on the wing in this paper. To determine the effect of coupling stress on the wing's material and structural properties, the fluid-structure interaction (FSI) method is used in ANSYS-Workbench to calculate the stress that is caused by pressure and temperature. Simulation analysis results show that with the increase of Mach number, the pressure and temperature on the wing's surface both increase exponentially and thermal stress that is caused by temperature will be the main factor in the coupled stress. When compared with three kinds of materials, titanium alloy, aluminum alloy, and Haynes alloy, carbon fiber composite material has better performance in service at high speed, and natural frequency under coupling pre-stressing will get smaller.</description><subject>Aircraft</subject><subject>Aircraft components</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Fiber composites</subject><subject>Fluid-structure interaction</subject><subject>Mach number</subject><subject>Prestressing</subject><subject>Simulation</subject><subject>Thermal stress</subject><subject>Wings (aircraft)</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkU9vFCEchkmjaevaQ79AQ-JFD6MMsANzMdnU1jZp9VC1R8IwsEvDQOVPk_0YfmMZWzfVE5Dfw5MXXgCOW_SekB59SC1HtMWU74HDlmLacIzRi2f7A_AqpTuEMCGE74MD3HdsPh2CXzd2Kk5mGzxceem2ySYYDDx3xY7NTY5F5RI1vPRZR6n-cHV8Ydcb-EO7oGzewjP_YGPwk_a5gsYV7ZWGs9FGFaXJ8Nb6NbyW1WGlS7D4UUf4yRqj43zpWqoN_FKmQcf0Grw0ldFHT-sCfD8_-3Z60Vx9_Xx5urpqFEUkN5LUF4-SD70eBkOpMZ1WiinW8ZbIjnayI8bQJaUIGy6JUchgiWnLWMuWIyML8PHRe1-GSY-q5ojSiftoJxm3Ikgr_p14uxHr8CCWPeWUz4K3T4IYfhadsphsUto56XUoSWCEWYcQqnkW4M1_6F0osX73TFHEGV32M_XukVIxpBS12YVpkZiLFruiK3vyPP2O_Nss-Q12daXM</recordid><startdate>20180418</startdate><enddate>20180418</enddate><creator>Zhang, Lijun</creator><creator>Sun, Changyan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5273-6867</orcidid></search><sort><creationdate>20180418</creationdate><title>Simulation Analysis of Fluid-Structure Interaction of High Velocity Environment Influence on Aircraft Wing Materials under Different Mach Numbers</title><author>Zhang, Lijun ; Sun, Changyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-a3412da8b9ebbf44ff6ecc7c76813a646a63ff454402f8a3fc0f2a24177175d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aircraft</topic><topic>Aircraft components</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Fiber composites</topic><topic>Fluid-structure interaction</topic><topic>Mach number</topic><topic>Prestressing</topic><topic>Simulation</topic><topic>Thermal stress</topic><topic>Wings (aircraft)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lijun</creatorcontrib><creatorcontrib>Sun, Changyan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lijun</au><au>Sun, Changyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation Analysis of Fluid-Structure Interaction of High Velocity Environment Influence on Aircraft Wing Materials under Different Mach Numbers</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2018-04-18</date><risdate>2018</risdate><volume>18</volume><issue>4</issue><spage>1248</spage><pages>1248-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Aircraft service process is in a state of the composite load of pressure and temperature for a long period of time, which inevitably affects the inherent characteristics of some components in aircraft accordingly. The flow field of aircraft wing materials under different Mach numbers is simulated by Fluent in order to extract pressure and temperature on the wing in this paper. To determine the effect of coupling stress on the wing's material and structural properties, the fluid-structure interaction (FSI) method is used in ANSYS-Workbench to calculate the stress that is caused by pressure and temperature. Simulation analysis results show that with the increase of Mach number, the pressure and temperature on the wing's surface both increase exponentially and thermal stress that is caused by temperature will be the main factor in the coupled stress. When compared with three kinds of materials, titanium alloy, aluminum alloy, and Haynes alloy, carbon fiber composite material has better performance in service at high speed, and natural frequency under coupling pre-stressing will get smaller.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>29670023</pmid><doi>10.3390/s18041248</doi><orcidid>https://orcid.org/0000-0002-5273-6867</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2018-04, Vol.18 (4), p.1248
issn 1424-8220
1424-8220
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948487
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aircraft
Aircraft components
Carbon fiber reinforced plastics
Carbon fibers
Composite materials
Fiber composites
Fluid-structure interaction
Mach number
Prestressing
Simulation
Thermal stress
Wings (aircraft)
title Simulation Analysis of Fluid-Structure Interaction of High Velocity Environment Influence on Aircraft Wing Materials under Different Mach Numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20Analysis%20of%20Fluid-Structure%20Interaction%20of%20High%20Velocity%20Environment%20Influence%20on%20Aircraft%20Wing%20Materials%20under%20Different%20Mach%20Numbers&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Zhang,%20Lijun&rft.date=2018-04-18&rft.volume=18&rft.issue=4&rft.spage=1248&rft.pages=1248-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s18041248&rft_dat=%3Cproquest_pubme%3E2040874591%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040874591&rft_id=info:pmid/29670023&rfr_iscdi=true