Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film

The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanopart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasmonics (Norwell, Mass.) Mass.), 2018, Vol.13 (3), p.997-1014
1. Verfasser: Li, Wenbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1014
container_issue 3
container_start_page 997
container_title Plasmonics (Norwell, Mass.)
container_volume 13
creator Li, Wenbing
description The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanoparticle, and nanodimer, can be illustrated by classical electrodynamics. When the space of a nanodimer downs to subnanometer, the classical electrodynamics would fail to predict the resonance spectrum or dispersion of the nanostructures. The quantum model and quantum-corrected electrodynamics model, are introduced to deal with this problem. For the single nanoparticle over a metallic thin film with an isolation layer, the plasmonic resonance and the enhanced local field depend on the thickness of the isolation layer strongly. When the isolation layer thickness goes down to subnanometer, the classical electromagnetics model would be replaced by the quantum model for illustrating of the plasmonics. The physics models of plasmonics have wide applications in design and fabrication of the metallic nanostructure for further research.
doi_str_mv 10.1007/s11468-017-0598-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037547426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-2f6de2af1a2fba70d0cdce895a4a44fd152c13524d9050a5f6b67255fa4eeca3</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhS0EoqXwAGyQJTYsOmB77PlhgYQiSpFaqET21o3nOnHlsYM9qdJX4KlxlJICKiv_nO8c--oQ8pKzt5yx9l3mXDZdxXhbMdV31fYROeZKtRXvm_rxYa_UEXmW8zVjUspGPiVHom87Jrr-mPy8Wt1mZzK9jAP6TKOlVx7yGEO5fE-_u7D0SL9CiGtIkzMeT-ksjmuP24fF3WlwI6ZTCmF4iKHxBhO9xAm8d4bOVy7QM-fH5-SJBZ_xxd16QuZnn-az8-ri2-cvs48XlVF1M1XCNgMKsByEXUDLBmYGg12vQIKUduBKGF4rIYeeKQbKNoumFUpZkIgG6hPyYR-73ixGLNYwJfB6ndwI6VZHcPpvJbiVXsYbrXrZCVWXgDd3ASn-2GCe9OiyQe8hYNxkLZgUou46Lgr6-h_0Om5SKNMVqm6VbKVoCsX3lEkx54T28BnO9K5ovS9al6L1rmi9LZ5Xf05xcPxutgBiD-QihSWm-6f_n_oLqsG3MQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037547426</pqid></control><display><type>article</type><title>Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Wenbing</creator><creatorcontrib>Li, Wenbing</creatorcontrib><description>The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanoparticle, and nanodimer, can be illustrated by classical electrodynamics. When the space of a nanodimer downs to subnanometer, the classical electrodynamics would fail to predict the resonance spectrum or dispersion of the nanostructures. The quantum model and quantum-corrected electrodynamics model, are introduced to deal with this problem. For the single nanoparticle over a metallic thin film with an isolation layer, the plasmonic resonance and the enhanced local field depend on the thickness of the isolation layer strongly. When the isolation layer thickness goes down to subnanometer, the classical electromagnetics model would be replaced by the quantum model for illustrating of the plasmonics. The physics models of plasmonics have wide applications in design and fabrication of the metallic nanostructure for further research.</description><identifier>ISSN: 1557-1955</identifier><identifier>EISSN: 1557-1963</identifier><identifier>DOI: 10.1007/s11468-017-0598-x</identifier><identifier>PMID: 29780289</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biophysics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Electrodynamics ; Nanoparticles ; Nanostructure ; Nanotechnology ; Physics ; Plasmonics ; Thickness ; Thin films</subject><ispartof>Plasmonics (Norwell, Mass.), 2018, Vol.13 (3), p.997-1014</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-2f6de2af1a2fba70d0cdce895a4a44fd152c13524d9050a5f6b67255fa4eeca3</citedby><cites>FETCH-LOGICAL-c536t-2f6de2af1a2fba70d0cdce895a4a44fd152c13524d9050a5f6b67255fa4eeca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11468-017-0598-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11468-017-0598-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29780289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wenbing</creatorcontrib><title>Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film</title><title>Plasmonics (Norwell, Mass.)</title><addtitle>Plasmonics</addtitle><addtitle>Plasmonics</addtitle><description>The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanoparticle, and nanodimer, can be illustrated by classical electrodynamics. When the space of a nanodimer downs to subnanometer, the classical electrodynamics would fail to predict the resonance spectrum or dispersion of the nanostructures. The quantum model and quantum-corrected electrodynamics model, are introduced to deal with this problem. For the single nanoparticle over a metallic thin film with an isolation layer, the plasmonic resonance and the enhanced local field depend on the thickness of the isolation layer strongly. When the isolation layer thickness goes down to subnanometer, the classical electromagnetics model would be replaced by the quantum model for illustrating of the plasmonics. The physics models of plasmonics have wide applications in design and fabrication of the metallic nanostructure for further research.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electrodynamics</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Thickness</subject><subject>Thin films</subject><issn>1557-1955</issn><issn>1557-1963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kc1uEzEUhS0EoqXwAGyQJTYsOmB77PlhgYQiSpFaqET21o3nOnHlsYM9qdJX4KlxlJICKiv_nO8c--oQ8pKzt5yx9l3mXDZdxXhbMdV31fYROeZKtRXvm_rxYa_UEXmW8zVjUspGPiVHom87Jrr-mPy8Wt1mZzK9jAP6TKOlVx7yGEO5fE-_u7D0SL9CiGtIkzMeT-ksjmuP24fF3WlwI6ZTCmF4iKHxBhO9xAm8d4bOVy7QM-fH5-SJBZ_xxd16QuZnn-az8-ri2-cvs48XlVF1M1XCNgMKsByEXUDLBmYGg12vQIKUduBKGF4rIYeeKQbKNoumFUpZkIgG6hPyYR-73ixGLNYwJfB6ndwI6VZHcPpvJbiVXsYbrXrZCVWXgDd3ASn-2GCe9OiyQe8hYNxkLZgUou46Lgr6-h_0Om5SKNMVqm6VbKVoCsX3lEkx54T28BnO9K5ovS9al6L1rmi9LZ5Xf05xcPxutgBiD-QihSWm-6f_n_oLqsG3MQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Li, Wenbing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2018</creationdate><title>Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film</title><author>Li, Wenbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-2f6de2af1a2fba70d0cdce895a4a44fd152c13524d9050a5f6b67255fa4eeca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electrodynamics</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenbing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plasmonics (Norwell, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film</atitle><jtitle>Plasmonics (Norwell, Mass.)</jtitle><stitle>Plasmonics</stitle><addtitle>Plasmonics</addtitle><date>2018</date><risdate>2018</risdate><volume>13</volume><issue>3</issue><spage>997</spage><epage>1014</epage><pages>997-1014</pages><issn>1557-1955</issn><eissn>1557-1963</eissn><abstract>The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanoparticle, and nanodimer, can be illustrated by classical electrodynamics. When the space of a nanodimer downs to subnanometer, the classical electrodynamics would fail to predict the resonance spectrum or dispersion of the nanostructures. The quantum model and quantum-corrected electrodynamics model, are introduced to deal with this problem. For the single nanoparticle over a metallic thin film with an isolation layer, the plasmonic resonance and the enhanced local field depend on the thickness of the isolation layer strongly. When the isolation layer thickness goes down to subnanometer, the classical electromagnetics model would be replaced by the quantum model for illustrating of the plasmonics. The physics models of plasmonics have wide applications in design and fabrication of the metallic nanostructure for further research.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29780289</pmid><doi>10.1007/s11468-017-0598-x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1557-1955
ispartof Plasmonics (Norwell, Mass.), 2018, Vol.13 (3), p.997-1014
issn 1557-1955
1557-1963
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948253
source SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biological and Medical Physics
Biophysics
Biotechnology
Chemistry
Chemistry and Materials Science
Electrodynamics
Nanoparticles
Nanostructure
Nanotechnology
Physics
Plasmonics
Thickness
Thin films
title Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics%20Models%20of%20Plasmonics:%20Single%20Nanoparticle,%20Complex%20Single%20Nanoparticle,%20Nanodimer,%20and%20Single%20Nanoparticle%20over%20Metallic%20Thin%20Film&rft.jtitle=Plasmonics%20(Norwell,%20Mass.)&rft.au=Li,%20Wenbing&rft.date=2018&rft.volume=13&rft.issue=3&rft.spage=997&rft.epage=1014&rft.pages=997-1014&rft.issn=1557-1955&rft.eissn=1557-1963&rft_id=info:doi/10.1007/s11468-017-0598-x&rft_dat=%3Cproquest_pubme%3E2037547426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037547426&rft_id=info:pmid/29780289&rfr_iscdi=true