Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film
The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanopart...
Gespeichert in:
Veröffentlicht in: | Plasmonics (Norwell, Mass.) Mass.), 2018, Vol.13 (3), p.997-1014 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1014 |
---|---|
container_issue | 3 |
container_start_page | 997 |
container_title | Plasmonics (Norwell, Mass.) |
container_volume | 13 |
creator | Li, Wenbing |
description | The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanoparticle, and nanodimer, can be illustrated by classical electrodynamics. When the space of a nanodimer downs to subnanometer, the classical electrodynamics would fail to predict the resonance spectrum or dispersion of the nanostructures. The quantum model and quantum-corrected electrodynamics model, are introduced to deal with this problem. For the single nanoparticle over a metallic thin film with an isolation layer, the plasmonic resonance and the enhanced local field depend on the thickness of the isolation layer strongly. When the isolation layer thickness goes down to subnanometer, the classical electromagnetics model would be replaced by the quantum model for illustrating of the plasmonics. The physics models of plasmonics have wide applications in design and fabrication of the metallic nanostructure for further research. |
doi_str_mv | 10.1007/s11468-017-0598-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037547426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-2f6de2af1a2fba70d0cdce895a4a44fd152c13524d9050a5f6b67255fa4eeca3</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhS0EoqXwAGyQJTYsOmB77PlhgYQiSpFaqET21o3nOnHlsYM9qdJX4KlxlJICKiv_nO8c--oQ8pKzt5yx9l3mXDZdxXhbMdV31fYROeZKtRXvm_rxYa_UEXmW8zVjUspGPiVHom87Jrr-mPy8Wt1mZzK9jAP6TKOlVx7yGEO5fE-_u7D0SL9CiGtIkzMeT-ksjmuP24fF3WlwI6ZTCmF4iKHxBhO9xAm8d4bOVy7QM-fH5-SJBZ_xxd16QuZnn-az8-ri2-cvs48XlVF1M1XCNgMKsByEXUDLBmYGg12vQIKUduBKGF4rIYeeKQbKNoumFUpZkIgG6hPyYR-73ixGLNYwJfB6ndwI6VZHcPpvJbiVXsYbrXrZCVWXgDd3ASn-2GCe9OiyQe8hYNxkLZgUou46Lgr6-h_0Om5SKNMVqm6VbKVoCsX3lEkx54T28BnO9K5ovS9al6L1rmi9LZ5Xf05xcPxutgBiD-QihSWm-6f_n_oLqsG3MQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037547426</pqid></control><display><type>article</type><title>Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Wenbing</creator><creatorcontrib>Li, Wenbing</creatorcontrib><description>The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanoparticle, and nanodimer, can be illustrated by classical electrodynamics. When the space of a nanodimer downs to subnanometer, the classical electrodynamics would fail to predict the resonance spectrum or dispersion of the nanostructures. The quantum model and quantum-corrected electrodynamics model, are introduced to deal with this problem. For the single nanoparticle over a metallic thin film with an isolation layer, the plasmonic resonance and the enhanced local field depend on the thickness of the isolation layer strongly. When the isolation layer thickness goes down to subnanometer, the classical electromagnetics model would be replaced by the quantum model for illustrating of the plasmonics. The physics models of plasmonics have wide applications in design and fabrication of the metallic nanostructure for further research.</description><identifier>ISSN: 1557-1955</identifier><identifier>EISSN: 1557-1963</identifier><identifier>DOI: 10.1007/s11468-017-0598-x</identifier><identifier>PMID: 29780289</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biophysics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Electrodynamics ; Nanoparticles ; Nanostructure ; Nanotechnology ; Physics ; Plasmonics ; Thickness ; Thin films</subject><ispartof>Plasmonics (Norwell, Mass.), 2018, Vol.13 (3), p.997-1014</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-2f6de2af1a2fba70d0cdce895a4a44fd152c13524d9050a5f6b67255fa4eeca3</citedby><cites>FETCH-LOGICAL-c536t-2f6de2af1a2fba70d0cdce895a4a44fd152c13524d9050a5f6b67255fa4eeca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11468-017-0598-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11468-017-0598-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29780289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Wenbing</creatorcontrib><title>Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film</title><title>Plasmonics (Norwell, Mass.)</title><addtitle>Plasmonics</addtitle><addtitle>Plasmonics</addtitle><description>The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanoparticle, and nanodimer, can be illustrated by classical electrodynamics. When the space of a nanodimer downs to subnanometer, the classical electrodynamics would fail to predict the resonance spectrum or dispersion of the nanostructures. The quantum model and quantum-corrected electrodynamics model, are introduced to deal with this problem. For the single nanoparticle over a metallic thin film with an isolation layer, the plasmonic resonance and the enhanced local field depend on the thickness of the isolation layer strongly. When the isolation layer thickness goes down to subnanometer, the classical electromagnetics model would be replaced by the quantum model for illustrating of the plasmonics. The physics models of plasmonics have wide applications in design and fabrication of the metallic nanostructure for further research.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electrodynamics</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Thickness</subject><subject>Thin films</subject><issn>1557-1955</issn><issn>1557-1963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kc1uEzEUhS0EoqXwAGyQJTYsOmB77PlhgYQiSpFaqET21o3nOnHlsYM9qdJX4KlxlJICKiv_nO8c--oQ8pKzt5yx9l3mXDZdxXhbMdV31fYROeZKtRXvm_rxYa_UEXmW8zVjUspGPiVHom87Jrr-mPy8Wt1mZzK9jAP6TKOlVx7yGEO5fE-_u7D0SL9CiGtIkzMeT-ksjmuP24fF3WlwI6ZTCmF4iKHxBhO9xAm8d4bOVy7QM-fH5-SJBZ_xxd16QuZnn-az8-ri2-cvs48XlVF1M1XCNgMKsByEXUDLBmYGg12vQIKUduBKGF4rIYeeKQbKNoumFUpZkIgG6hPyYR-73ixGLNYwJfB6ndwI6VZHcPpvJbiVXsYbrXrZCVWXgDd3ASn-2GCe9OiyQe8hYNxkLZgUou46Lgr6-h_0Om5SKNMVqm6VbKVoCsX3lEkx54T28BnO9K5ovS9al6L1rmi9LZ5Xf05xcPxutgBiD-QihSWm-6f_n_oLqsG3MQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Li, Wenbing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2018</creationdate><title>Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film</title><author>Li, Wenbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-2f6de2af1a2fba70d0cdce895a4a44fd152c13524d9050a5f6b67255fa4eeca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electrodynamics</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wenbing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plasmonics (Norwell, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wenbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film</atitle><jtitle>Plasmonics (Norwell, Mass.)</jtitle><stitle>Plasmonics</stitle><addtitle>Plasmonics</addtitle><date>2018</date><risdate>2018</risdate><volume>13</volume><issue>3</issue><spage>997</spage><epage>1014</epage><pages>997-1014</pages><issn>1557-1955</issn><eissn>1557-1963</eissn><abstract>The physics models of plasmonics for single nanoparticle, complex single nanoparticle, nanodimer, and single nanoparticle over a metallic thin film with an isolation layer, have been reviewed in this article. In nanoscale, the localized plasmonics from the single nanoparticle, hybrid single nanoparticle, and nanodimer, can be illustrated by classical electrodynamics. When the space of a nanodimer downs to subnanometer, the classical electrodynamics would fail to predict the resonance spectrum or dispersion of the nanostructures. The quantum model and quantum-corrected electrodynamics model, are introduced to deal with this problem. For the single nanoparticle over a metallic thin film with an isolation layer, the plasmonic resonance and the enhanced local field depend on the thickness of the isolation layer strongly. When the isolation layer thickness goes down to subnanometer, the classical electromagnetics model would be replaced by the quantum model for illustrating of the plasmonics. The physics models of plasmonics have wide applications in design and fabrication of the metallic nanostructure for further research.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29780289</pmid><doi>10.1007/s11468-017-0598-x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1557-1955 |
ispartof | Plasmonics (Norwell, Mass.), 2018, Vol.13 (3), p.997-1014 |
issn | 1557-1955 1557-1963 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948253 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biological and Medical Physics Biophysics Biotechnology Chemistry Chemistry and Materials Science Electrodynamics Nanoparticles Nanostructure Nanotechnology Physics Plasmonics Thickness Thin films |
title | Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics%20Models%20of%20Plasmonics:%20Single%20Nanoparticle,%20Complex%20Single%20Nanoparticle,%20Nanodimer,%20and%20Single%20Nanoparticle%20over%20Metallic%20Thin%20Film&rft.jtitle=Plasmonics%20(Norwell,%20Mass.)&rft.au=Li,%20Wenbing&rft.date=2018&rft.volume=13&rft.issue=3&rft.spage=997&rft.epage=1014&rft.pages=997-1014&rft.issn=1557-1955&rft.eissn=1557-1963&rft_id=info:doi/10.1007/s11468-017-0598-x&rft_dat=%3Cproquest_pubme%3E2037547426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037547426&rft_id=info:pmid/29780289&rfr_iscdi=true |